TPTP Problem File: LCL696^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LCL696^1 : TPTP v9.0.0. Released v4.0.0.
% Domain : Logic Calculi
% Problem : Propositional intuitionistic logic in HOL
% Version : [Goe33] axioms.
% English : An embedding of propositional intuitionisitc logic in HOL based
% on Goedel's second translation of propositional intuitionistic
% logic to modal logic S4.
% Refs : [Goe33] Goedel (1933), An Interpretation of the Intuitionistic
% : [Gol06] Goldblatt (2006), Mathematical Modal Logic: A View of
% : [Ben09] Benzmueller (2009), Email to Geoff Sutcliffe
% : [BP10] Benzmueller & Paulson (2009), Exploring Properties of
% Source : [Ben09]
% Names :
% Status : Satisfiable
% Rating : 0.33 v9.0.0, 0.00 v8.1.0, 0.33 v7.4.0, 0.00 v5.4.0, 0.67 v5.2.0, 0.00 v5.0.0, 0.67 v4.1.0, 1.00 v4.0.1, 0.00 v4.0.0
% Syntax : Number of formulae : 41 ( 20 unt; 20 typ; 19 def)
% Number of atoms : 65 ( 19 equ; 0 cnn)
% Maximal formula atoms : 3 ( 3 avg)
% Number of connectives : 57 ( 3 ~; 1 |; 2 &; 49 @)
% ( 0 <=>; 2 =>; 0 <=; 0 <~>)
% Maximal formula depth : 8 ( 1 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 95 ( 95 >; 0 *; 0 +; 0 <<)
% Number of symbols : 22 ( 20 usr; 1 con; 0-3 aty)
% Number of variables : 40 ( 31 ^; 7 !; 2 ?; 40 :)
% SPC : TH0_SAT_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
%----Include axioms of Propositional Intuitionistic Logic in HOL
include('Axioms/LCL011^0.ax').
%------------------------------------------------------------------------------