TPTP Problem File: LCL687-10.001.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LCL687-10.001 : TPTP v9.0.0. Released v7.3.0.
% Domain : Puzzles
% Problem : In S4, formula not provable in S5 embedding, size 1
% Version : Especial.
% English :
% Refs : [CS18] Claessen & Smallbone (2018), Efficient Encodings of Fi
% : [Sma18] Smallbone (2018), Email to Geoff Sutcliffe
% Source : [Sma18]
% Names :
% Status : Satisfiable
% Rating : 0.43 v9.0.0, 0.22 v8.2.0, 0.00 v8.1.0, 0.25 v7.5.0, 0.00 v7.3.0
% Syntax : Number of clauses : 10 ( 10 unt; 0 nHn; 6 RR)
% Number of literals : 10 ( 10 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 4 ( 1 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 11 ( 11 usr; 5 con; 0-4 aty)
% Number of variables : 9 ( 1 sgn)
% SPC : CNF_SAT_RFO_PEQ_UEQ
% Comments : Converted from LCL687+1.001 to UEQ using [CS18].
%------------------------------------------------------------------------------
cnf(ifeq_axiom,axiom,
ifeq(A,A,B,C) = B ).
cnf(reflexivity,axiom,
r1(X,X) = true ).
cnf(transitivity,axiom,
ifeq(r1(Y,Z),true,ifeq(r1(X,Y),true,r1(X,Z),true),true) = true ).
cnf(main,negated_conjecture,
r1(sK5_main_X,sK4_main_Y) = true ).
cnf(main_1,negated_conjecture,
r1(sK5_main_X,sK2_main_Y) = true ).
cnf(main_2,negated_conjecture,
r1(sK4_main_Y,sK3_main_X) = true ).
cnf(main_3,negated_conjecture,
p6(sK4_main_Y) = true ).
cnf(main_4,negated_conjecture,
p1(sK3_main_X) = true ).
cnf(main_5,negated_conjecture,
ifeq(r1(sK2_main_Y,X),true,r1(X,sK1_main_Y(X)),true) = true ).
cnf(main_6,negated_conjecture,
tuple(r1(sK2_main_Y,X),p6(sK1_main_Y(X))) != tuple(true,true) ).
%------------------------------------------------------------------------------