TPTP Problem File: LCL685+1.001.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LCL685+1.001 : TPTP v9.0.0. Released v4.0.0.
% Domain : Logic Calculi (Modal Logic)
% Problem : In S4, pigeonhole formulae missing a conjunct, size 1
% Version : Especial.
% English :
% Refs : [BHS00] Balsiger et al. (2000), A Benchmark Method for the Pro
% : [Kam08] Kaminski (2008), Email to G. Sutcliffe
% Source : [Kam08]
% Names : s4_ph_n [BHS00]
% Status : CounterSatisfiable
% Rating : 0.00 v4.0.0
% Syntax : Number of formulae : 3 ( 1 unt; 0 def)
% Number of atoms : 10 ( 0 equ)
% Maximal formula atoms : 6 ( 3 avg)
% Number of connectives : 15 ( 8 ~; 3 |; 3 &)
% ( 0 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 13 ( 7 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 3 ( 3 usr; 0 prp; 1-2 aty)
% Number of functors : 0 ( 0 usr; 0 con; --- aty)
% Number of variables : 7 ( 6 !; 1 ?)
% SPC : FOF_CSA_EPR_NEQ
% Comments : A naive relational encoding of the modal logic problem into
% first-order logic.
%------------------------------------------------------------------------------
fof(reflexivity,axiom,
! [X] : r1(X,X) ).
fof(transitivity,axiom,
! [X,Y,Z] :
( ( r1(X,Y)
& r1(Y,Z) )
=> r1(X,Z) ) ).
fof(main,conjecture,
~ ? [X] :
~ ( ~ ! [Y] :
( ~ r1(X,Y)
| ! [X] :
( ~ r1(Y,X)
| ~ ( p201(X)
& ~ p101(X) ) ) )
| ~ ( p201(X)
& p101(X) ) ) ).
%------------------------------------------------------------------------------