TPTP Problem File: LCL672+1.001.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LCL672+1.001 : TPTP v9.0.0. Released v4.0.0.
% Domain : Logic Calculi (Modal Logic)
% Problem : In S4, A5{box p0/p0} & box A5{~p0/p0} -> A5, size 1
% Version : Especial.
% English :
% Refs : [BHS00] Balsiger et al. (2000), A Benchmark Method for the Pro
% : [Kam08] Kaminski (2008), Email to G. Sutcliffe
% Source : [Kam08]
% Names : s4_45_p [BHS00]
% Status : Theorem
% Rating : 0.07 v9.0.0, 0.00 v6.1.0, 0.12 v6.0.0, 0.25 v5.4.0, 0.26 v5.3.0, 0.30 v5.2.0, 0.14 v5.0.0, 0.15 v4.1.0, 0.17 v4.0.1, 0.21 v4.0.0
% Syntax : Number of formulae : 3 ( 1 unt; 0 def)
% Number of atoms : 53 ( 0 equ)
% Maximal formula atoms : 49 ( 17 avg)
% Number of connectives : 110 ( 60 ~; 37 |; 12 &)
% ( 0 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 24 ( 11 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 4 ( 3 usr; 1 prp; 0-2 aty)
% Number of functors : 0 ( 0 usr; 0 con; --- aty)
% Number of variables : 35 ( 34 !; 1 ?)
% SPC : FOF_THM_RFO_NEQ
% Comments : A naive relational encoding of the modal logic problem into
% first-order logic.
%------------------------------------------------------------------------------
fof(reflexivity,axiom,
! [X] : r1(X,X) ).
fof(transitivity,axiom,
! [X,Y,Z] :
( ( r1(X,Y)
& r1(Y,Z) )
=> r1(X,Z) ) ).
fof(main,conjecture,
~ ? [X] :
~ ( ( ~ ! [Y] :
( ~ r1(X,Y)
| p2(Y) )
& ~ ! [Y] :
( ~ r1(X,Y)
| ~ ( ~ ! [X] :
( ~ r1(Y,X)
| ~ ! [Y] :
( ~ r1(X,Y)
| ~ p1(Y) ) )
& p1(Y) ) )
& ~ ! [Y] :
( ~ r1(X,Y)
| p1(Y) ) )
| ( ~ ! [Y] :
( ~ r1(X,Y)
| p2(Y) )
& ~ ! [Y] :
( ~ r1(X,Y)
| ! [X] :
( ~ r1(Y,X)
| ~ ( ~ ! [Y] :
( ~ r1(X,Y)
| ~ ! [X] :
( ~ r1(Y,X)
| p1(X) ) )
& ~ ! [Y] :
( ~ r1(X,Y)
| p1(Y) ) ) ) )
& ~ ! [Y] :
( ~ r1(X,Y)
| p1(Y) ) )
| ( ~ ! [Y] :
( ~ r1(X,Y)
| p2(Y) )
& ~ ! [Y] :
( ~ r1(X,Y)
| ~ ( ~ ! [X] :
( ~ r1(Y,X)
| ~ ! [Y] :
( ~ r1(X,Y)
| ~ ! [X] :
( ~ r1(Y,X)
| p1(X) ) ) )
& ~ ! [X] :
( ~ r1(Y,X)
| ~ ! [Y] :
( ~ r1(X,Y)
| p1(Y) ) ) ) )
& ~ ! [Y] :
( ~ r1(X,Y)
| p1(Y) ) )
| ( ~ ! [Y] :
( ~ r1(X,Y)
| p2(Y) )
& ~ ! [Y] :
( ~ r1(X,Y)
| ~ ! [X] :
( ~ r1(Y,X)
| $false ) )
& ~ ! [Y] :
( ~ r1(X,Y)
| p1(Y) ) )
| ! [Y] :
( ~ r1(X,Y)
| p2(Y) )
| ! [Y] :
( ~ r1(X,Y)
| ! [X] :
( ~ r1(Y,X)
| ~ ! [Y] :
( ~ r1(X,Y)
| p1(Y) ) )
| ! [X] :
( ~ r1(Y,X)
| p1(X) ) )
| ! [Y] :
( ~ r1(X,Y)
| p1(Y) ) ) ).
%------------------------------------------------------------------------------