TPTP Problem File: LCL665+1.001.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LCL665+1.001 : TPTP v9.0.0. Released v4.0.0.
% Domain : Logic Calculi (Modal Logic)
% Problem : In KT, no path through an incomplete labyrinth, size 1
% Version : Especial.
% English :
% Refs : [BHS00] Balsiger et al. (2000), A Benchmark Method for the Pro
% : [Kam08] Kaminski (2008), Email to G. Sutcliffe
% Source : [Kam08]
% Names : kt_path_n [BHS00]
% Status : CounterSatisfiable
% Rating : 0.00 v5.4.0, 0.07 v5.3.0, 0.15 v5.2.0, 0.00 v4.0.0
% Syntax : Number of formulae : 2 ( 1 unt; 0 def)
% Number of atoms : 69 ( 0 equ)
% Maximal formula atoms : 68 ( 34 avg)
% Number of connectives : 145 ( 78 ~; 55 |; 12 &)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 28 ( 15 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 13 ( 13 usr; 0 prp; 1-2 aty)
% Number of functors : 0 ( 0 usr; 0 con; --- aty)
% Number of variables : 38 ( 37 !; 1 ?)
% SPC : FOF_CSA_RFO_NEQ
% Comments : A naive relational encoding of the modal logic problem into
% first-order logic.
%------------------------------------------------------------------------------
fof(reflexivity,axiom,
! [X] : r1(X,X) ).
fof(main,conjecture,
~ ? [X] :
~ ( ~ ! [Y] :
( ~ r1(X,Y)
| ! [X] :
( ~ r1(Y,X)
| p26(X) ) )
| ~ ! [Y] :
( ~ r1(X,Y)
| ! [X] :
( ~ r1(Y,X)
| p25(X) ) )
| ~ ! [Y] :
( ~ r1(X,Y)
| ! [X] :
( ~ r1(Y,X)
| p24(X) ) )
| ~ ! [Y] :
( ~ r1(X,Y)
| ! [X] :
( ~ r1(Y,X)
| p22(X) ) )
| ~ ! [Y] :
( ~ r1(X,Y)
| ~ ( ! [X] :
( ~ r1(Y,X)
| p26(X) )
& ~ p16(Y) ) )
| ~ ! [Y] :
( ~ r1(X,Y)
| ~ ( ! [X] :
( ~ r1(Y,X)
| p26(X) )
& ~ p14(Y) ) )
| ~ ! [Y] :
( ~ r1(X,Y)
| ~ ( ! [X] :
( ~ r1(Y,X)
| p24(X) )
& ~ p16(Y) ) )
| ~ ! [Y] :
( ~ r1(X,Y)
| ~ ( ! [X] :
( ~ r1(Y,X)
| p24(X) )
& ~ p14(Y) ) )
| ~ ! [Y] :
( ~ r1(X,Y)
| ~ ( ! [X] :
( ~ r1(Y,X)
| p22(X) )
& ~ p16(Y) ) )
| ~ ! [Y] :
( ~ r1(X,Y)
| ~ ( ! [X] :
( ~ r1(Y,X)
| p22(X) )
& ~ p14(Y) ) )
| ~ ! [Y] :
( ~ r1(X,Y)
| ~ ( ! [X] :
( ~ r1(Y,X)
| p23(X) )
& ~ p15(Y) ) )
| ~ ! [Y] :
( ~ r1(X,Y)
| ~ ( ! [X] :
( ~ r1(Y,X)
| p21(X) )
& ~ p15(Y) ) )
| ~ ! [Y] :
( ~ r1(X,Y)
| ~ ( ! [X] :
( ~ r1(Y,X)
| p23(X) )
& ~ p13(Y) ) )
| ~ ! [Y] :
( ~ r1(X,Y)
| ~ ( ! [X] :
( ~ r1(Y,X)
| p21(X) )
& ~ p13(Y) ) )
| ~ ! [Y] :
( ~ r1(X,Y)
| ~ ( ! [X] :
( ~ r1(Y,X)
| p23(X) )
& ~ p11(Y) ) )
| ~ ! [Y] :
( ~ r1(X,Y)
| ~ ( ! [X] :
( ~ r1(Y,X)
| p21(X) )
& ~ p11(Y) ) )
| ! [Y] :
( ~ r1(X,Y)
| p15(Y) )
| ! [Y] :
( ~ r1(X,Y)
| p13(Y) )
| ! [Y] :
( ~ r1(X,Y)
| p12(Y) )
| ! [Y] :
( ~ r1(X,Y)
| p11(Y) ) ) ).
%------------------------------------------------------------------------------