TPTP Problem File: LCL633^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LCL633^1 : TPTP v9.0.0. Released v3.6.0.
% Domain : Logical Calculi
% Problem : Goedel's ontological argument on the existence of God
% Version : [Ben08] axioms.
% English :
% Refs : [Fit00] Fitting (2000), Higher-Order Modal Logic - A Sketch
% : [Ben08] Benzmueller (2008), Email to G. Sutcliffe
% Source : [Ben08]
% Names : Fitting-HOLML-Ex-God-alternative-a [Ben08]
% Status : CounterSatisfiable
% Rating : 0.67 v9.0.0, 1.00 v8.1.0, 0.60 v7.4.0, 0.50 v7.2.0, 0.33 v6.4.0, 0.67 v6.3.0, 0.33 v4.1.0, 0.00 v3.7.0
% Syntax : Number of formulae : 44 ( 17 unt; 25 typ; 17 def)
% Number of atoms : 58 ( 17 equ; 0 cnn)
% Maximal formula atoms : 6 ( 3 avg)
% Number of connectives : 66 ( 3 ~; 1 |; 2 &; 59 @)
% ( 0 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 8 ( 2 avg)
% Number of types : 4 ( 2 usr)
% Number of type conns : 100 ( 100 >; 0 *; 0 +; 0 <<)
% Number of symbols : 30 ( 27 usr; 7 con; 0-3 aty)
% Number of variables : 49 ( 36 ^; 9 !; 4 ?; 49 :)
% SPC : TH0_CSA_EQU_NAR
% Comments : .
% : This problem is known to be bugged. It is intended to be a theorem
% but there is a flaw in the encoding. Benzmueller says "... makes
% really no sense, I have used normal quantification in there
% instead of modal quantification. It is unclear what this does."
%------------------------------------------------------------------------------
%----Include simple maths definitions and axioms
include('Axioms/LCL008^0.ax').
%------------------------------------------------------------------------------
%----Signature
thf(a_type,type,
a: $tType ).
thf(p_type,type,
p: ( a > $i > $o ) > $i > $o ).
thf(g_type,type,
g: a > $i > $o ).
thf(e_type,type,
e: ( a > $i > $o ) > a > $i > $o ).
thf(r_type,type,
r: $i > $i > $o ).
%----Axioms
thf(positiveness,axiom,
! [X: a > $i > $o] :
( mvalid
@ ( mimpl @ ( mnot @ ( p @ X ) )
@ ( p
@ ^ [Z: a] : ( mnot @ ( X @ Z ) ) ) ) ) ).
thf(g,definition,
( g
= ( ^ [Z: a,W: $i] :
! [X: a > $i > $o] : ( mimpl @ ( p @ X ) @ ( X @ Z ) @ W ) ) ) ).
thf(e,definition,
( e
= ( ^ [X: a > $i > $o,Z: a,P: $i] :
! [Y: a > $i > $o] :
( mimpl @ ( Y @ Z )
@ ( mbox @ r
@ ^ [Q: $i] :
! [W: a] : ( mimpl @ ( X @ W ) @ ( Y @ W ) @ Q ) )
@ P ) ) ) ).
%----Conjecture
thf(thm,conjecture,
( mvalid
@ ^ [W: $i] :
! [Z: a] : ( mimpl @ ( g @ Z ) @ ( e @ g @ Z ) @ W ) ) ).
%------------------------------------------------------------------------------