TPTP Problem File: LCL631^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LCL631^1 : TPTP v9.0.0. Bugfixed v7.3.0.
% Domain : Logical Calculi
% Problem : The muddy forehead puzzle
% Version : [Ben08] axioms.
% English :
% Refs : [Fit07] Fitting (2007), Modal Proof Theory
% : [Ben08] Benzmueller (2008), Email to G. Sutcliffe
% Source : [Ben08]
% Names : Fitting-HB-Knowledge-2b [Ben08]
% Status : CounterSatisfiable
% Rating : 1.00 v7.3.0
% Syntax : Number of formulae : 56 ( 17 unt; 29 typ; 17 def)
% Number of atoms : 165 ( 17 equ; 0 cnn)
% Maximal formula atoms : 14 ( 6 avg)
% Number of connectives : 155 ( 3 ~; 1 |; 2 &; 148 @)
% ( 0 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 13 ( 3 avg)
% Number of types : 3 ( 1 usr)
% Number of type conns : 98 ( 98 >; 0 *; 0 +; 0 <<)
% Number of symbols : 36 ( 33 usr; 8 con; 0-3 aty)
% Number of variables : 41 ( 30 ^; 7 !; 4 ?; 41 :)
% SPC : TH0_THM_EQU_NAR
% Comments :
% Bugfixes : v7.3.0 - Made relation R a constant.
%------------------------------------------------------------------------------
%----Include simple maths definitions and axioms
include('Axioms/LCL008^0.ax').
%------------------------------------------------------------------------------
%----Signature
thf(a,type,
a: $i > $i > $o ).
thf(b,type,
b: $i > $i > $o ).
thf(c,type,
c: $i > $i > $o ).
thf(mfa,type,
mfa: $i > $o ).
thf(mfb,type,
mfb: $i > $o ).
thf(mfc,type,
mfc: $i > $o ).
thf(ck,type,
ck: ( $i > $o ) > $i > $o ).
thf(s,type,
s: $i > $o ).
thf(r_type,type,
r: $i > $i > $o ).
%----Axioms
thf(knowledge_implies_truth,axiom,
! [X: $i > $o] : ( mvalid @ ( mimpl @ ( mbox @ r @ X ) @ X ) ) ).
thf(positive_introspection,axiom,
! [X: $i > $o] : ( mvalid @ ( mimpl @ ( mbox @ r @ X ) @ ( mbox @ r @ ( mbox @ r @ X ) ) ) ) ).
thf(negitive_introspection,axiom,
! [X: $i > $o] : ( mvalid @ ( mimpl @ ( mnot @ ( mbox @ r @ X ) ) @ ( mbox @ r @ ( mnot @ ( mbox @ r @ X ) ) ) ) ) ).
thf(common_knowledge,definition,
( ck
= ( ^ [X: $i > $o,W: $i] : ( mbox @ r @ X @ W ) ) ) ).
thf(what_a_knows_about_b,axiom,
mvalid @ ( ck @ ( mor @ ( mbox @ a @ mfb ) @ ( mbox @ a @ ( mnot @ mfb ) ) ) ) ).
thf(what_a_knows_about_c,axiom,
mvalid @ ( ck @ ( mor @ ( mbox @ a @ mfc ) @ ( mbox @ a @ ( mnot @ mfc ) ) ) ) ).
thf(what_b_knows_about_a,axiom,
mvalid @ ( ck @ ( mor @ ( mbox @ b @ mfa ) @ ( mbox @ b @ ( mnot @ mfa ) ) ) ) ).
thf(what_b_knows_about_c,axiom,
mvalid @ ( ck @ ( mor @ ( mbox @ b @ mfc ) @ ( mbox @ b @ ( mnot @ mfc ) ) ) ) ).
thf(what_c_knows_about_a,axiom,
mvalid @ ( ck @ ( mor @ ( mbox @ c @ mfa ) @ ( mbox @ c @ ( mnot @ mfa ) ) ) ) ).
thf(what_c_knows_about_b,axiom,
mvalid @ ( ck @ ( mor @ ( mbox @ c @ mfb ) @ ( mbox @ c @ ( mnot @ mfb ) ) ) ) ).
thf(someone_knows_its_forehead,definition,
( s
= ( mor @ ( mbox @ a @ mfa ) @ ( mor @ ( mbox @ a @ ( mnot @ mfa ) ) @ ( mor @ ( mbox @ b @ mfb ) @ ( mor @ ( mbox @ b @ ( mnot @ mfb ) ) @ ( mor @ ( mbox @ c @ mfc ) @ ( mbox @ c @ ( mnot @ mfc ) ) ) ) ) ) ) ) ).
%----Conjecture
thf(thm,conjecture,
mvalid @ ( mnot @ ( mimpl @ ( ck @ ( mnot @ ( mimpl @ ( ck @ ( mor @ mfa @ ( mor @ mfb @ mfc ) ) ) @ s ) ) ) @ s ) ) ).
%------------------------------------------------------------------------------