TPTP Problem File: LCL629^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LCL629^1 : TPTP v9.0.0. Bugfixed v7.3.0.
% Domain : Logical Calculi
% Problem : Simple theorem about knowledge
% Version : [Ben08] axioms.
% English :
% Refs : [Fit07] Fitting (2007), Modal Proof Theory
% : [Ben08] Benzmueller (2008), Email to G. Sutcliffe
% Source : [Ben08]
% Names : Fitting-HB-Knowledge-1 [Ben08]
% Status : Theorem
% Rating : 1.00 v7.3.0
% Syntax : Number of formulae : 43 ( 15 unt; 24 typ; 15 def)
% Number of atoms : 79 ( 15 equ; 0 cnn)
% Maximal formula atoms : 20 ( 4 avg)
% Number of connectives : 83 ( 3 ~; 1 |; 2 &; 76 @)
% ( 0 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 14 ( 3 avg)
% Number of types : 3 ( 1 usr)
% Number of type conns : 92 ( 92 >; 0 *; 0 +; 0 <<)
% Number of symbols : 31 ( 28 usr; 8 con; 0-3 aty)
% Number of variables : 41 ( 28 ^; 9 !; 4 ?; 41 :)
% SPC : TH0_THM_EQU_NAR
% Comments :
% Bugfixes : v7.3.0 - Made relation R a constant.
%------------------------------------------------------------------------------
%----Include simple maths definitions and axioms
include('Axioms/LCL008^0.ax').
%------------------------------------------------------------------------------
%----Signature
thf(a,type,
a: $i > $i > $o ).
thf(b,type,
b: $i > $i > $o ).
thf(c,type,
c: $i > $i > $o ).
thf(r_type,type,
r: $i > $i > $o ).
%----Axioms
thf(knowledge_implies_truth,axiom,
! [X: $i > $o] : ( mvalid @ ( mimpl @ ( mbox @ r @ X ) @ X ) ) ).
thf(positive_introspection,axiom,
! [X: $i > $o] : ( mvalid @ ( mimpl @ ( mbox @ r @ X ) @ ( mbox @ r @ ( mbox @ r @ X ) ) ) ) ).
thf(negitive_introspection,axiom,
! [X: $i > $o] : ( mvalid @ ( mimpl @ ( mnot @ ( mbox @ r @ X ) ) @ ( mbox @ r @ ( mnot @ ( mbox @ r @ X ) ) ) ) ) ).
%----Conjecture
thf(thm,conjecture,
! [X: $i > $o,Y: $i > $o] : ( mvalid @ ( mimpl @ ( mand @ ( mbox @ a @ ( mnot @ ( mbox @ b @ ( mnot @ ( mbox @ b @ ( mnot @ Y ) ) ) ) ) ) @ ( mbox @ a @ X ) ) @ ( mbox @ a @ ( mnot @ ( mbox @ b @ ( mimpl @ X @ Y ) ) ) ) ) ) ).
%------------------------------------------------------------------------------