TPTP Problem File: LCL626^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LCL626^1 : TPTP v9.0.0. Bugfixed v7.3.0.
% Domain : Logical Calculi
% Problem : Loeb axiom is valid in this frame
% Version : [Ben08] axioms.
% English : In a frame that is transitive and upwards well-founded, the Loeb
% axiom is valid.
% Refs : [Fit07] Fitting (2007), Modal Proof Theory
% : [Ben08] Benzmueller (2008), Email to G. Sutcliffe
% Source : [Ben08]
% Names : Fitting-HB-14 [Ben08]
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.10 v8.2.0, 0.23 v8.1.0, 0.18 v7.5.0, 0.14 v7.4.0, 0.11 v7.3.0
% Syntax : Number of formulae : 80 ( 36 unt; 42 typ; 36 def)
% Number of atoms : 102 ( 40 equ; 0 cnn)
% Maximal formula atoms : 10 ( 2 avg)
% Number of connectives : 137 ( 6 ~; 3 |; 15 &; 103 @)
% ( 1 <=>; 9 =>; 0 <=; 0 <~>)
% Maximal formula depth : 8 ( 1 avg)
% Number of types : 3 ( 1 usr)
% Number of type conns : 224 ( 224 >; 0 *; 0 +; 0 <<)
% Number of symbols : 49 ( 46 usr; 8 con; 0-4 aty)
% Number of variables : 109 ( 76 ^; 23 !; 10 ?; 109 :)
% SPC : TH0_THM_EQU_NAR
% Comments :
% Bugfixes : v7.3.0 - Made relation R a constant.
%------------------------------------------------------------------------------
%----Include simple maths definitions and axioms
include('Axioms/LCL008^0.ax').
include('Axioms/SET008^2.ax').
%------------------------------------------------------------------------------
%----Axioms
thf(r_type,type,
r: $i > $i > $o ).
thf(upwf_trans,axiom,
( ( transitive @ r )
& ( upwards_well_founded @ r ) ) ).
%----Conjecture
thf(k4,conjecture,
! [X: $i > $o] : ( mvalid @ ( mimpl @ ( mbox @ r @ X ) @ ( mbox @ r @ ( mbox @ r @ ( mbox @ r @ X ) ) ) ) ) ).
%------------------------------------------------------------------------------