TPTP Problem File: LCL544+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LCL544+1 : TPTP v9.0.0. Released v3.3.0.
% Domain : Logic Calculi (Propositional modal)
% Problem : Prove axiom m4 from KM4B axiomatization of S5
% Version : [HC96] axioms.
% English :
% Refs : [HC96] Hughes & Cresswell (1996), A New Introduction to Modal
% : [Hal] Halleck (URL), John Halleck's Logic Systems
% Source : [TPTP]
% Names :
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.17 v8.2.0, 0.19 v8.1.0, 0.22 v7.5.0, 0.25 v7.4.0, 0.23 v7.3.0, 0.21 v7.1.0, 0.22 v7.0.0, 0.23 v6.4.0, 0.31 v6.3.0, 0.25 v6.2.0, 0.32 v6.1.0, 0.37 v6.0.0, 0.39 v5.5.0, 0.56 v5.4.0, 0.54 v5.3.0, 0.63 v5.2.0, 0.45 v5.1.0, 0.48 v5.0.0, 0.50 v4.1.0, 0.57 v4.0.1, 0.52 v4.0.0, 0.46 v3.7.0, 0.35 v3.5.0, 0.37 v3.4.0, 0.53 v3.3.0
% Syntax : Number of formulae : 89 ( 31 unt; 0 def)
% Number of atoms : 156 ( 11 equ)
% Maximal formula atoms : 4 ( 1 avg)
% Number of connectives : 67 ( 0 ~; 0 |; 3 &)
% ( 49 <=>; 15 =>; 0 <=; 0 <~>)
% Maximal formula depth : 6 ( 3 avg)
% Maximal term depth : 5 ( 2 avg)
% Number of predicates : 61 ( 60 usr; 59 prp; 0-2 aty)
% Number of functors : 9 ( 9 usr; 0 con; 1-2 aty)
% Number of variables : 110 ( 110 !; 0 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
%------------------------------------------------------------------------------
%----Include Hilbert's axiomatization of propositional logic
include('Axioms/LCL006+0.ax').
include('Axioms/LCL006+1.ax').
include('Axioms/LCL006+2.ax').
%----Include axioms of modal logic
include('Axioms/LCL007+0.ax').
include('Axioms/LCL007+1.ax').
%----Include axioms for KM4B
include('Axioms/LCL007+3.ax').
%------------------------------------------------------------------------------
%----Modal definitions
fof(s1_0_op_possibly,axiom,
op_possibly ).
fof(s1_0_op_or,axiom,
op_or ).
fof(s1_0_op_implies,axiom,
op_implies ).
fof(s1_0_op_strict_implies,axiom,
op_strict_implies ).
fof(s1_0_op_equiv,axiom,
op_equiv ).
fof(s1_0_op_strict_equiv,axiom,
op_strict_equiv ).
%----Conjecture
fof(s1_0_axiom_m4,conjecture,
axiom_m4 ).
%------------------------------------------------------------------------------