TPTP Problem File: LCL448+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LCL448+1 : TPTP v9.2.1. Bugfixed v9.2.0.
% Domain : Logic Calculi (Propositional)
% Problem : Redundant axiom in Principia axiomatization
% Version : [RW10] axioms : Reduced > Complete.
% English :
% Refs : [Hal] Halleck (URL), John Halleck's Logic Systems
% Source : [TPTP]
% Names :
% Status : Theorem
% Rating : ? v9.2.0
% Syntax : Number of formulae : 41 ( 10 unt; 0 def)
% Number of atoms : 75 ( 6 equ)
% Maximal formula atoms : 4 ( 1 avg)
% Number of connectives : 34 ( 0 ~; 0 |; 1 &)
% ( 26 <=>; 7 =>; 0 <=; 0 <~>)
% Maximal formula depth : 6 ( 3 avg)
% Maximal term depth : 5 ( 2 avg)
% Number of predicates : 33 ( 32 usr; 31 prp; 0-2 aty)
% Number of functors : 5 ( 5 usr; 0 con; 1-2 aty)
% Number of variables : 65 ( 65 !; 0 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments :
% Bugfixes : Renamed "substitution_of_equivalents" to
% "use_substitution_of_equivalents" to avoid duplicate name.
%------------------------------------------------------------------------------
%----Include axioms of propositional logic
include('Axioms/LCL006+0.ax').
include('Axioms/LCL006+1.ax').
%------------------------------------------------------------------------------
%----Operator definitions to reduce everything to and & not
fof(principia_op_implies_or,axiom,
op_implies_or ).
fof(principia_op_and,axiom,
op_and ).
fof(principia_op_equiv,axiom,
op_equiv ).
%----The one explicit rule
fof(principia_modus_ponens,axiom,
modus_ponens ).
%----The axioms
fof(principia_r1,axiom,
r1 ).
fof(principia_r2,axiom,
r2 ).
fof(principia_r3,axiom,
r3 ).
fof(principia_r5,axiom,
r5 ).
%----Admissible but not required for completeness. With it much more can
%----be done.
fof(use_substitution_of_equivalents,axiom,
substitution_of_equivalents ).
%----This is the redundant axiom in Principia
fof(principia_r4,conjecture,
r4 ).
%------------------------------------------------------------------------------