TPTP Problem File: LCL427-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : LCL427-1 : TPTP v9.0.0. Released v2.5.0.
% Domain : Logic Calculi
% Problem : ORG-D23 is a single axiom for propositional calculus
% Version : [EF+02] axioms.
% English : Show that formula ORG-D23 is a single axiom for propositional
% calculus in terms of the Sheffer stroke by deriving Nicod's
% single axiom.
% Refs : [EF+02] Ernst et al. (2002), More First-order Test Problems in
% Source : [EF+02]
% Names : sheffer-org-d23 [EF+02]
% Status : Unsatisfiable
% Rating : 1.00 v2.5.0
% Syntax : Number of clauses : 3 ( 2 unt; 0 nHn; 2 RR)
% Number of literals : 5 ( 0 equ; 3 neg)
% Maximal clause size : 3 ( 1 avg)
% Maximal term depth : 6 ( 2 avg)
% Number of predicates : 1 ( 1 usr; 0 prp; 1-1 aty)
% Number of functors : 6 ( 6 usr; 5 con; 0-2 aty)
% Number of variables : 7 ( 1 sgn)
% SPC : CNF_UNS_RFO_NEQ_HRN
% Comments : The nice property of ORG-D23 is that it is organic; that is, no
% subformula is a theorem.
%--------------------------------------------------------------------------
%----Detachment rule for the Sheffer stroke
cnf(condensed_detachment,axiom,
( ~ is_a_theorem(detach(A,detach(B,C)))
| ~ is_a_theorem(A)
| is_a_theorem(C) ) ).
%----ORG-D23
cnf(org_d23,axiom,
is_a_theorem(detach(detach(A,detach(B,C)),detach(detach(A,detach(B,C)),detach(detach(D,C),detach(detach(C,D),detach(A,D)))))) ).
%----Denial of Nicod's original single axiom
cnf(prove_nicod,negated_conjecture,
~ is_a_theorem(detach(detach(a,detach(b,c)),detach(detach(e,detach(e,e)),detach(detach(f,b),detach(detach(a,f),detach(a,f)))))) ).
%--------------------------------------------------------------------------