TPTP Problem File: LCL426-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : LCL426-1 : TPTP v9.0.0. Released v2.5.0.
% Domain : Logic Calculi (Implication)
% Problem : Prove the mingle formula by condensed detachment
% Version : [EF+02] axioms.
% English : Show that the mingle axiom can be derived from the three formulas
% given below by condensed detachment.
% Refs : [EF+01] Ernst et al. (2001), A Concise Axiomatization of RM->
% : [EF+02] Ernst et al. (2002), More First-order Test Problems in
% Source : [EF+02]
% Names : mingle-concise [EF+02]
% Status : Unsatisfiable
% Rating : 1.00 v2.5.0
% Syntax : Number of clauses : 5 ( 4 unt; 0 nHn; 2 RR)
% Number of literals : 7 ( 0 equ; 3 neg)
% Maximal clause size : 3 ( 1 avg)
% Maximal term depth : 7 ( 2 avg)
% Number of predicates : 1 ( 1 usr; 0 prp; 1-1 aty)
% Number of functors : 4 ( 4 usr; 3 con; 0-2 aty)
% Number of variables : 10 ( 0 sgn)
% SPC : CNF_UNS_RFO_NEQ_HRN
% Comments : This gives a simpler basis for the system RM->
%--------------------------------------------------------------------------
%----Condensed detachment
cnf(condensed_detachment,axiom,
( ~ is_a_theorem(implies(A,B))
| ~ is_a_theorem(A)
| is_a_theorem(B) ) ).
%----Suffixing
cnf(suffixing,axiom,
is_a_theorem(implies(implies(A,B),implies(implies(B,C),implies(A,C)))) ).
%----Assertion
cnf(assertion,axiom,
is_a_theorem(implies(A,implies(implies(A,B),B))) ).
%----Candidate
cnf(candidate,axiom,
is_a_theorem(implies(implies(implies(implies(implies(A,B),C),implies(B,A)),C),C)) ).
%----Denial of mingle axiom
cnf(prove_mingle,negated_conjecture,
~ is_a_theorem(implies(implies(implies(implies(implies(a,b),b),a),c),implies(implies(implies(implies(implies(b,a),a),b),c),c))) ).
%--------------------------------------------------------------------------