TPTP Problem File: LCL425-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : LCL425-1 : TPTP v9.0.0. Released v2.5.0.
% Domain : Logic Calculi (BCI)
% Problem : BCI+mingle implies Karpenko by condensed detachment
% Version : [EF+02] axioms.
% English : Show that if the mingle formula is added to the logic BCI,
% the Karpenko formula can be derived by condensed detachment.
% Refs : [EF+02] Ernst et al. (2002), More First-order Test Problems in
% : [Ern02] Ernst (2002), Completions from TV-> to H->
% Source : [EF+02]
% Names : mingle-bci [EF+02]
% Status : Unsatisfiable
% Rating : 1.00 v4.0.1, 0.86 v3.4.0, 0.80 v3.3.0, 0.67 v3.1.0, 1.00 v2.5.0
% Syntax : Number of clauses : 5 ( 4 unt; 0 nHn; 2 RR)
% Number of literals : 7 ( 0 equ; 3 neg)
% Maximal clause size : 3 ( 1 avg)
% Maximal term depth : 7 ( 2 avg)
% Number of predicates : 1 ( 1 usr; 0 prp; 1-1 aty)
% Number of functors : 3 ( 3 usr; 2 con; 0-2 aty)
% Number of variables : 11 ( 0 sgn)
% SPC : CNF_UNS_RFO_NEQ_HRN
% Comments :
%--------------------------------------------------------------------------
%----Condensed detachment
cnf(condensed_detachment,axiom,
( ~ is_a_theorem(implies(A,B))
| ~ is_a_theorem(A)
| is_a_theorem(B) ) ).
%----B
cnf(b,axiom,
is_a_theorem(implies(implies(A,B),implies(implies(C,A),implies(C,B)))) ).
%----C
cnf(c,axiom,
is_a_theorem(implies(implies(A,implies(B,C)),implies(B,implies(A,C)))) ).
%----Mingle
cnf(mingle,axiom,
is_a_theorem(implies(implies(implies(implies(implies(A,B),B),A),C),implies(implies(implies(implies(implies(B,A),A),B),C),C))) ).
%----Denial of Karpenko formula
cnf(prove_karpenko,negated_conjecture,
~ is_a_theorem(implies(implies(a,implies(implies(b,b),a)),implies(implies(implies(a,b),b),implies(implies(b,a),a)))) ).
%--------------------------------------------------------------------------