TPTP Problem File: LCL423-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : LCL423-1 : TPTP v9.0.0. Released v2.5.0.
% Domain : Logic Calculi (Implication/Negation 2 valued sentential)
% Problem : Luka-23 is a single axiom
% Version : [EF+02] axioms.
% English : Show that the formula Luka-23 is a single axiom for two-valued
% logic by deriving the Lukasiewicz 3-basis.
% Refs : [FW01] Fitelson & Wos (2001), Missing Proofs Found
% : [EF+02] Ernst et al. (2002), More First-order Test Problems in
% Source : [EF+02]
% Names : twoval-luka-23 [EF+02]
% Status : Unsatisfiable
% Rating : 0.93 v9.0.0, 0.91 v8.2.0, 0.86 v8.1.0, 0.75 v7.4.0, 0.83 v7.3.0, 0.75 v6.2.0, 0.83 v6.1.0, 1.00 v4.0.1, 0.86 v3.4.0, 0.80 v3.3.0, 0.67 v3.2.0, 0.33 v3.1.0, 1.00 v2.5.0
% Syntax : Number of clauses : 3 ( 1 unt; 0 nHn; 2 RR)
% Number of literals : 7 ( 0 equ; 5 neg)
% Maximal clause size : 3 ( 2 avg)
% Maximal term depth : 7 ( 2 avg)
% Number of predicates : 1 ( 1 usr; 0 prp; 1-1 aty)
% Number of functors : 5 ( 5 usr; 3 con; 0-2 aty)
% Number of variables : 8 ( 3 sgn)
% SPC : CNF_UNS_RFO_NEQ_HRN
% Comments :
%--------------------------------------------------------------------------
%----Condensed detachment
cnf(condensed_detachment,axiom,
( ~ is_a_theorem(implies(A,B))
| ~ is_a_theorem(A)
| is_a_theorem(B) ) ).
%----Luka-23
cnf(luka23,axiom,
is_a_theorem(implies(implies(implies(A,B),implies(implies(implies(not(C),not(D)),E),C)),implies(F,implies(implies(C,A),implies(D,A))))) ).
%----Denial of Lukasiewicz 3-basis
cnf(prove_luka_3_basis,negated_conjecture,
( ~ is_a_theorem(implies(implies(a,b),implies(implies(b,c),implies(a,c))))
| ~ is_a_theorem(implies(implies(not(a),a),a))
| ~ is_a_theorem(implies(a,implies(not(a),b))) ) ).
%--------------------------------------------------------------------------