TPTP Problem File: LCL417-2.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : LCL417-2 : TPTP v9.0.0. Released v3.2.0.
% Domain : Logic Calculi (Equivalential)
% Problem : XCB is a single axiom for the equivalential calculus
% Version : [McC05] axioms.
% English : Show that formula XCB is a single axiom for the equivalential
% calculus by deriving the pair of axioms {symmetry, transitivity}.
% Refs : [McC05] McCune (2005), Fascinating XCB Inference
% : [WUF02] Wos et al. (2002), Vanquishing the XCB Question: The M
% Source : [McC05]
% Names :
% Status : Unsatisfiable
% Rating : 1.00 v9.0.0, 0.82 v8.2.0, 0.57 v8.1.0, 0.50 v7.4.0, 0.83 v7.3.0, 0.75 v7.0.0, 1.00 v3.2.0
% Syntax : Number of clauses : 3 ( 1 unt; 0 nHn; 2 RR)
% Number of literals : 6 ( 0 equ; 4 neg)
% Maximal clause size : 3 ( 2 avg)
% Maximal term depth : 5 ( 2 avg)
% Number of predicates : 1 ( 1 usr; 0 prp; 1-1 aty)
% Number of functors : 4 ( 4 usr; 3 con; 0-2 aty)
% Number of variables : 5 ( 0 sgn)
% SPC : CNF_UNS_RFO_NEQ_HRN
% Comments :
%--------------------------------------------------------------------------
%----Condensed detachment
cnf(condensed_detachment,axiom,
( ~ is_a_theorem(equivalent(A,B))
| ~ is_a_theorem(A)
| is_a_theorem(B) ) ).
%----XCB
cnf(xcb,axiom,
is_a_theorem(equivalent(A,equivalent(equivalent(equivalent(A,B),equivalent(C,B)),C))) ).
%----Denial of the pair of axioms {symmetry, transitivity}
cnf(prove_symmetry_and_transitivity,negated_conjecture,
( ~ is_a_theorem(equivalent(equivalent(a,b),equivalent(b,a)))
| ~ is_a_theorem(equivalent(equivalent(a,b),equivalent(equivalent(b,c),equivalent(a,c)))) ) ).
%--------------------------------------------------------------------------