TPTP Problem File: LCL416-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : LCL416-1 : TPTP v9.0.0. Released v2.5.0.
% Domain : Logic Calculi (Equivalential)
% Problem : Prove reflexivity from formula XCB by condensed detachment
% Version : [EF+02] axioms.
% English :
% Refs : [WW+83] Wos et al. (1983), Questions Concerning Possible Short
% : [EF+02] Ernst et al. (2002), More First-order Test Problems in
% Source : [EF+02]
% Names : xcb-reflex [EF+02]
% Status : Unsatisfiable
% Rating : 0.00 v6.1.0, 0.29 v6.0.0, 0.11 v5.5.0, 0.25 v5.4.0, 0.28 v5.3.0, 0.30 v5.2.0, 0.23 v5.1.0, 0.25 v5.0.0, 0.20 v4.1.0, 0.27 v4.0.1, 0.00 v3.1.0, 0.17 v2.7.0, 0.25 v2.6.0, 0.33 v2.5.0
% Syntax : Number of clauses : 3 ( 2 unt; 0 nHn; 2 RR)
% Number of literals : 5 ( 0 equ; 3 neg)
% Maximal clause size : 3 ( 1 avg)
% Maximal term depth : 5 ( 2 avg)
% Number of predicates : 1 ( 1 usr; 0 prp; 1-1 aty)
% Number of functors : 2 ( 2 usr; 1 con; 0-2 aty)
% Number of variables : 5 ( 0 sgn)
% SPC : CNF_UNS_RFO_NEQ_HRN
% Comments : This was long thought to be a nontheorem and was first proved
% by Fitelson.
%--------------------------------------------------------------------------
%----Condensed detachment
cnf(condensed_detachment,axiom,
( ~ is_a_theorem(equivalent(A,B))
| ~ is_a_theorem(A)
| is_a_theorem(B) ) ).
%----XCB
cnf(xcb,axiom,
is_a_theorem(equivalent(A,equivalent(equivalent(equivalent(A,B),equivalent(C,B)),C))) ).
%----Denial of reflexivity
cnf(prove_reflexivity,negated_conjecture,
~ is_a_theorem(equivalent(a,a)) ).
%--------------------------------------------------------------------------