TPTP Problem File: LCL392+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : LCL392+1 : TPTP v9.1.0. Released v9.1.0.
% Domain : Logic Calculi (Implication/Negation 2 valued sentential)
% Problem : CN-56 depends on the Lukasiewicz system
% Version : [Wos96] axioms.
% English : An axiomatisation of the Implication/Negation 2 valued
% sentential calculus is {CN-1,CN-2,CN-3} by Lukasiewicz.
% Show that CN-56 depends on the Lukasiewicz system.
% Refs : [Wos96] Wos (1996), Combining Resonance with Heat
% : [RW+23] Rawson et al. (2023), Lemmas: Generation, Selection, A
% Source : [Wos96]
% Names : thesis_56 [Wos96]
% Status : Theorem
% Rating : 0.75 v9.1.0
% Syntax : Number of formulae : 5 ( 4 unt; 0 def)
% Number of atoms : 7 ( 0 equ)
% Maximal formula atoms : 3 ( 1 avg)
% Number of connectives : 2 ( 0 ~; 0 |; 1 &)
% ( 0 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 5 ( 3 avg)
% Maximal term depth : 5 ( 2 avg)
% Number of predicates : 1 ( 1 usr; 0 prp; 1-1 aty)
% Number of functors : 5 ( 5 usr; 3 con; 0-2 aty)
% Number of variables : 8 ( 8 !; 0 ?)
% SPC : FOF_THM_RFO_NEQ
% Comments :
%--------------------------------------------------------------------------
fof(condensed_detachment,axiom,
! [X,Y] :
( ( is_a_theorem(implies(X,Y))
& is_a_theorem(X) )
=> is_a_theorem(Y) ) ).
fof(cn_1,axiom,
! [X,Y,Z] : is_a_theorem(implies(implies(X,Y),implies(implies(Y,Z),implies(X,Z)))) ).
fof(cn_2,axiom,
! [X] : is_a_theorem(implies(implies(not(X),X),X)) ).
fof(cn_3,axiom,
! [X,Y] : is_a_theorem(implies(X,implies(not(X),Y))) ).
fof(prove_cn_56,conjecture,
is_a_theorem(implies(implies(implies(implies(x,y),y),z),implies(implies(not(x),y),z))) ).
%--------------------------------------------------------------------------