TPTP Problem File: LCL363-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : LCL363-1 : TPTP v9.0.0. Released v2.3.0.
% Domain : Logic Calculi (Implication/Negation 2 valued sentential)
% Problem : CN-12 depends on the Lukasiewicz system
% Version : [McC92] axioms.
% English : An axiomatisation of the Implication/Negation 2 valued
% sentential calculus is {CN-1,CN-2,CN-3} by Lukasiewicz.
% Show that CN-12 depends on the Lukasiewicz system.
% Refs : [Wos96] Wos (1996), Combining Resonance with Heat
% : [McC92] McCune (1992), Email to G. Sutcliffe
% Source : [Wos96]
% Names : thesis_12 [Wos96]
% Status : Unsatisfiable
% Rating : 0.00 v6.1.0, 0.07 v6.0.0, 0.00 v5.5.0, 0.06 v5.4.0, 0.11 v5.3.0, 0.20 v5.2.0, 0.08 v5.1.0, 0.12 v5.0.0, 0.13 v4.0.1, 0.00 v2.6.0, 0.14 v2.5.0, 0.00 v2.3.0
% Syntax : Number of clauses : 5 ( 4 unt; 0 nHn; 2 RR)
% Number of literals : 7 ( 0 equ; 3 neg)
% Maximal clause size : 3 ( 1 avg)
% Maximal term depth : 5 ( 2 avg)
% Number of predicates : 1 ( 1 usr; 0 prp; 1-1 aty)
% Number of functors : 4 ( 4 usr; 2 con; 0-2 aty)
% Number of variables : 8 ( 1 sgn)
% SPC : CNF_UNS_RFO_NEQ_HRN
% Comments :
%--------------------------------------------------------------------------
cnf(condensed_detachment,axiom,
( ~ is_a_theorem(implies(X,Y))
| ~ is_a_theorem(X)
| is_a_theorem(Y) ) ).
cnf(cn_1,axiom,
is_a_theorem(implies(implies(X,Y),implies(implies(Y,Z),implies(X,Z)))) ).
cnf(cn_2,axiom,
is_a_theorem(implies(implies(not(X),X),X)) ).
cnf(cn_3,axiom,
is_a_theorem(implies(X,implies(not(X),Y))) ).
cnf(prove_cn_12,negated_conjecture,
~ is_a_theorem(implies(x,implies(implies(not(y),y),y))) ).
%--------------------------------------------------------------------------