TPTP Problem File: LCL166-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : LCL166-1 : TPTP v9.0.0. Released v1.0.0.
% Domain : Logic Calculi (Equivalential)
% Problem : UM depends on XHN
% Version : [WW+90] axioms.
% English : Show that the single Meredith axiom UM can be derived from
% the single Winker axiom XHN.
% Refs : [WW+90] Wos et al. (1990), Automated Reasoning Contributes to
% : [MW92] McCune & Wos (1992), Experiments in Automated Deductio
% Source : [WW+90]
% Names : EC-1 [WW+90]
% Status : Unsatisfiable
% Rating : 0.13 v9.0.0, 0.09 v8.2.0, 0.14 v8.1.0, 0.00 v6.2.0, 0.33 v6.1.0, 0.50 v6.0.0, 0.33 v5.5.0, 0.56 v5.3.0, 0.65 v5.2.0, 0.54 v5.1.0, 0.56 v5.0.0, 0.53 v4.0.1, 0.14 v3.4.0, 0.20 v3.3.0, 0.00 v3.2.0, 0.33 v3.1.0, 0.50 v2.7.0, 0.62 v2.6.0, 0.57 v2.4.0, 0.43 v2.3.0, 0.43 v2.2.1, 0.78 v2.2.0, 0.89 v2.1.0, 1.00 v2.0.0
% Syntax : Number of clauses : 3 ( 2 unt; 0 nHn; 2 RR)
% Number of literals : 5 ( 0 equ; 3 neg)
% Maximal clause size : 3 ( 1 avg)
% Maximal term depth : 5 ( 2 avg)
% Number of predicates : 1 ( 1 usr; 0 prp; 1-1 aty)
% Number of functors : 4 ( 4 usr; 3 con; 0-2 aty)
% Number of variables : 5 ( 0 sgn)
% SPC : CNF_UNS_RFO_NEQ_HRN
% Comments :
%--------------------------------------------------------------------------
cnf(condensed_detachment,axiom,
( ~ is_a_theorem(equivalent(X,Y))
| ~ is_a_theorem(X)
| is_a_theorem(Y) ) ).
%----Axiom by Winker
cnf(xhn,axiom,
is_a_theorem(equivalent(X,equivalent(equivalent(Y,Z),equivalent(equivalent(Z,X),Y)))) ).
%----Axiom by Meredith
cnf(prove_um,negated_conjecture,
~ is_a_theorem(equivalent(equivalent(equivalent(a,b),c),equivalent(b,equivalent(c,a)))) ).
%--------------------------------------------------------------------------