TPTP Problem File: LCL164-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : LCL164-1 : TPTP v9.0.0. Released v1.0.0.
% Domain : Logic Calculi (Wajsberg Algebra)
% Problem : The 4th Wajsberg algebra axiom, from the alternative axioms
% Version : [Bon91] (equality) axioms.
% English :
% Refs : [FRT84] Font et al. (1984), Wajsberg Algebras
% : [AB90] Anantharaman & Bonacina (1990), An Application of the
% : [Bon91] Bonacina (1991), Problems in Lukasiewicz Logic
% Source : [Bon91]
% Names : W axiom 4 [Bon91]
% Status : Unsatisfiable
% Rating : 0.05 v8.2.0, 0.04 v8.1.0, 0.10 v7.5.0, 0.08 v7.4.0, 0.17 v7.3.0, 0.11 v7.1.0, 0.06 v7.0.0, 0.11 v6.3.0, 0.18 v6.2.0, 0.21 v6.1.0, 0.12 v6.0.0, 0.24 v5.5.0, 0.21 v5.4.0, 0.00 v5.2.0, 0.07 v5.1.0, 0.00 v2.2.1, 0.22 v2.2.0, 0.29 v2.1.0, 0.38 v2.0.0
% Syntax : Number of clauses : 14 ( 14 unt; 0 nHn; 2 RR)
% Number of literals : 14 ( 14 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 5 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 8 ( 8 usr; 4 con; 0-2 aty)
% Number of variables : 19 ( 1 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments :
%--------------------------------------------------------------------------
%----Include Alternative Wajsberg algebra axioms
include('Axioms/LCL002-0.ax').
%--------------------------------------------------------------------------
%----Include some Alternative Wajsberg algebra definitions
% include('Axioms/LCL002-1.ax').
%----Definition that and_star is AC and xor is C
cnf(xor_commutativity,axiom,
xor(X,Y) = xor(Y,X) ).
cnf(and_star_associativity,axiom,
and_star(and_star(X,Y),Z) = and_star(X,and_star(Y,Z)) ).
cnf(and_star_commutativity,axiom,
and_star(X,Y) = and_star(Y,X) ).
%----Definition of false in terms of true
cnf(false_definition,axiom,
not(truth) = falsehood ).
%----Include the definition of implies in terms of xor and and_star
cnf(implies_definition,axiom,
implies(X,Y) = xor(truth,and_star(X,xor(truth,Y))) ).
cnf(prove_wajsberg_axiom,negated_conjecture,
implies(implies(not(x),not(y)),implies(y,x)) != truth ).
%--------------------------------------------------------------------------