TPTP Problem File: LCL144-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : LCL144-1 : TPTP v9.0.0. Released v1.0.0.
% Domain : Logic Calculi (Wajsberg Algebra)
% Problem : A theorem in the lattice structure of Wajsberg algebras
% Version : [Bon91] (equality) axioms.
% English :
% Refs : [FRT84] Font et al. (1984), Wajsberg Algebras
% : [Bon91] Bonacina (1991), Problems in Lukasiewicz Logic
% Source : [Bon91]
% Names : Lattice structure theorem 3 [Bon91]
% Status : Unsatisfiable
% Rating : 0.20 v9.0.0, 0.25 v8.2.0, 0.24 v8.1.0, 0.11 v7.5.0, 0.26 v7.4.0, 0.18 v7.3.0, 0.33 v7.1.0, 0.25 v7.0.0, 0.33 v6.4.0, 0.27 v6.2.0, 0.50 v6.1.0, 0.57 v6.0.0, 0.60 v5.5.0, 0.75 v5.3.0, 0.78 v5.2.0, 0.69 v5.1.0, 0.71 v4.1.0, 0.77 v4.0.1, 0.55 v4.0.0, 0.64 v3.7.0, 0.50 v3.5.0, 0.55 v3.4.0, 0.58 v3.3.0, 0.57 v3.2.0, 0.54 v3.1.0, 0.64 v2.7.0, 0.58 v2.6.0, 0.60 v2.5.0, 0.75 v2.4.0, 0.78 v2.2.1, 1.00 v2.0.0
% Syntax : Number of clauses : 10 ( 6 unt; 1 nHn; 4 RR)
% Number of literals : 14 ( 8 equ; 4 neg)
% Maximal clause size : 2 ( 1 avg)
% Maximal term depth : 4 ( 2 avg)
% Number of predicates : 2 ( 1 usr; 0 prp; 2-2 aty)
% Number of functors : 8 ( 8 usr; 4 con; 0-2 aty)
% Number of variables : 16 ( 0 sgn)
% SPC : CNF_UNS_RFO_SEQ_NHN
% Comments :
%--------------------------------------------------------------------------
%----Include Wajsberg algebra axioms
include('Axioms/LCL001-0.ax').
%----Include Wajsberg algebra lattice structure axioms
include('Axioms/LCL001-1.ax').
%--------------------------------------------------------------------------
cnf(antecedent,negated_conjecture,
( ordered(x,implies(y,z))
| ordered(y,implies(x,z)) ) ).
cnf(prove_wajsberg_theorem,negated_conjecture,
( ~ ordered(x,implies(y,z))
| ~ ordered(y,implies(x,z)) ) ).
%--------------------------------------------------------------------------