TPTP Problem File: LCL143-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : LCL143-1 : TPTP v9.0.0. Released v1.0.0.
% Domain : Logic Calculi (Wajsberg Algebra)
% Problem : A theorem in the lattice structure of Wajsberg algebras
% Version : [Bon91] (equality) axioms.
% English :
% Refs : [FRT84] Font et al. (1984), Wajsberg Algebras
% : [Bon91] Bonacina (1991), Problems in Lukasiewicz Logic
% Source : [Bon91]
% Names : Lattice structure theorem 2 [Bon91]
% Status : Unsatisfiable
% Rating : 0.08 v9.0.0, 0.06 v8.2.0, 0.00 v6.0.0, 0.22 v5.5.0, 0.19 v5.4.0, 0.20 v5.3.0, 0.33 v5.2.0, 0.25 v5.1.0, 0.14 v5.0.0, 0.00 v2.6.0, 0.14 v2.5.0, 0.00 v2.0.0
% Syntax : Number of clauses : 10 ( 8 unt; 0 nHn; 4 RR)
% Number of literals : 12 ( 8 equ; 3 neg)
% Maximal clause size : 2 ( 1 avg)
% Maximal term depth : 4 ( 2 avg)
% Number of predicates : 2 ( 1 usr; 0 prp; 2-2 aty)
% Number of functors : 8 ( 8 usr; 4 con; 0-2 aty)
% Number of variables : 16 ( 0 sgn)
% SPC : CNF_UNS_RFO_SEQ_HRN
% Comments :
%--------------------------------------------------------------------------
%----Include Wajsberg algebra axioms
include('Axioms/LCL001-0.ax').
%----Include Wajsberg algebra lattice structure axioms
include('Axioms/LCL001-1.ax').
%--------------------------------------------------------------------------
cnf(antecedent,negated_conjecture,
ordered(x,y) ).
cnf(prove_wajsberg_theorem,negated_conjecture,
~ ordered(implies(z,x),implies(z,y)) ).
%--------------------------------------------------------------------------