TPTP Problem File: LCL136-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : LCL136-1 : TPTP v9.0.0. Released v1.0.0.
% Domain : Logic Calculi (Wajsberg Algebra)
% Problem : A lemma in Wajsberg algebras
% Version : [Bon91] (equality) axioms.
% English : An axiomatisation of the many valued sentential calculus
% is {MV-1,MV-2,MV-3,MV-5} by Meredith. Wajsberg provided
% a different axiomatisation. Show that a version of MV-2
% depends on the Wajsberg system.
% Refs : [FRT84] Font et al. (1984), Wajsberg Algebras
% : [Bon91] Bonacina (1991), Problems in Lukasiewicz Logic
% : [MW92] McCune & Wos (1992), Experiments in Automated Deductio
% Source : [Bon91]
% Names : Lemma 5 [Bon91]
% Status : Satisfiable
% Rating : 0.43 v9.0.0, 0.22 v8.2.0, 0.00 v8.1.0, 0.25 v7.5.0, 0.00 v6.2.0, 0.17 v6.1.0, 0.40 v6.0.0, 0.20 v5.5.0, 0.40 v5.4.0, 0.50 v5.3.0, 0.67 v5.2.0, 0.33 v3.2.0, 0.67 v3.1.0, 0.33 v2.4.0, 0.67 v2.2.1, 0.75 v2.2.0, 0.67 v2.1.0, 1.00 v2.0.0
% Syntax : Number of clauses : 6 ( 6 unt; 0 nHn; 2 RR)
% Number of literals : 6 ( 6 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 4 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 6 ( 6 usr; 4 con; 0-2 aty)
% Number of variables : 8 ( 0 sgn)
% SPC : CNF_SAT_RFO_PEQ_UEQ
% Comments :
%--------------------------------------------------------------------------
%----Include Wajsberg algebra axioms
include('Axioms/LCL001-0.ax').
%--------------------------------------------------------------------------
cnf(lemma_antecedent,negated_conjecture,
implies(x,y) = implies(y,z) ).
cnf(prove_wajsberg_lemma,negated_conjecture,
implies(x,z) != truth ).
%--------------------------------------------------------------------------