TPTP Problem File: LCL123-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : LCL123-1 : TPTP v9.0.0. Bugfixed v2.3.0.
% Domain : Logic Calculi (Right group)
% Problem : LG-4 depends on LG-2
% Version : [McC92b] axioms.
% English : Kalman's axiomatisation of the right group calculus
% is {LG-1,LG-2,LG-3,LG-4,LG-5}. McCune has shown that LG-2
% is a single axiom. Other axiomatisations by McCune are
% {Q-2,Q-3}, {Q-3,Q-4}, S-2, S-3, S-4, P-4, S-6. Show that LG-4
% depends on LG-2.
% Refs : [MW92] McCune & Wos (1992), Experiments in Automated Deductio
% : [McC92a] McCune (1992), Automated Discovery of New Axiomatisat
% : [McC92b] McCune (1992), Email to G. Sutcliffe
% Source : [McC92b]
% Names : RG-104 [MW92]
% Status : Unsatisfiable
% Rating : 0.27 v9.0.0, 0.09 v8.2.0, 0.00 v7.4.0, 0.17 v7.3.0, 0.00 v6.2.0, 0.17 v6.1.0, 0.21 v6.0.0, 0.22 v5.5.0, 0.25 v5.4.0, 0.39 v5.3.0, 0.45 v5.2.0, 0.38 v5.1.0, 0.31 v5.0.0, 0.33 v4.0.1, 0.14 v4.0.0, 0.00 v2.7.0, 0.25 v2.6.0, 0.14 v2.4.0, 0.25 v2.3.0
% Syntax : Number of clauses : 3 ( 2 unt; 0 nHn; 2 RR)
% Number of literals : 5 ( 0 equ; 3 neg)
% Maximal clause size : 3 ( 1 avg)
% Maximal term depth : 6 ( 2 avg)
% Number of predicates : 1 ( 1 usr; 0 prp; 1-1 aty)
% Number of functors : 6 ( 6 usr; 5 con; 0-2 aty)
% Number of variables : 6 ( 0 sgn)
% SPC : CNF_UNS_RFO_NEQ_HRN
% Comments :
% Bugfixes : v2.3.0 - Clause prove_lg_4 fixed.
%--------------------------------------------------------------------------
cnf(condensed_detachment,axiom,
( ~ is_a_theorem(equivalent(X,Y))
| ~ is_a_theorem(X)
| is_a_theorem(Y) ) ).
cnf(lg_2,axiom,
is_a_theorem(equivalent(X,equivalent(X,equivalent(equivalent(Y,Z),equivalent(equivalent(Y,U),equivalent(Z,U)))))) ).
cnf(prove_lg_4,negated_conjecture,
~ is_a_theorem(equivalent(equivalent(equivalent(a,equivalent(b,c)),equivalent(e,equivalent(b,f))),equivalent(a,equivalent(e,equivalent(c,f))))) ).
%--------------------------------------------------------------------------