TPTP Problem File: LCL114-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : LCL114-1 : TPTP v9.0.0. Released v1.0.0.
% Domain : Logic Calculi (Many valued sentential)
% Problem : MV-36 depnds on the Merideth system
% Version : [McC92] axioms.
% English : An axiomatisation of the many valued sentential calculus
% is {MV-1,MV-2,MV-3,MV-5} by Meredith. Show that 36 depends
% on the Meredith system.
% Refs : [Ove90] Overbeek (1990), ATP competition announced at CADE-10
% : [MW92] McCune & Wos (1992), Experiments in Automated Deductio
% : [McC92] McCune (1992), Email to G. Sutcliffe
% : [Ove93] Overbeek (1993), The CADE-11 Competitions: A Personal
% : [LM93] Lusk & McCune (1993), Uniform Strategies: The CADE-11
% Source : [McC92]
% Names : CADE-11 Competition 7 [Ove90]
% : MV-60 [MW92]
% : THEOREM 7 [LM93]
% Status : Unsatisfiable
% Rating : 0.27 v9.0.0, 0.09 v8.2.0, 0.00 v7.4.0, 0.17 v7.3.0, 0.00 v6.2.0, 0.17 v6.1.0, 0.43 v6.0.0, 0.22 v5.5.0, 0.50 v5.4.0, 0.56 v5.3.0, 0.65 v5.2.0, 0.38 v5.1.0, 0.50 v5.0.0, 0.47 v4.1.0, 0.53 v4.0.1, 0.14 v3.4.0, 0.00 v3.1.0, 0.17 v2.7.0, 0.50 v2.6.0, 0.29 v2.5.0, 0.00 v2.4.0, 0.29 v2.3.0, 0.43 v2.2.1, 0.89 v2.1.0, 0.88 v2.0.0
% Syntax : Number of clauses : 6 ( 5 unt; 0 nHn; 2 RR)
% Number of literals : 8 ( 0 equ; 3 neg)
% Maximal clause size : 3 ( 1 avg)
% Maximal term depth : 4 ( 2 avg)
% Number of predicates : 1 ( 1 usr; 0 prp; 1-1 aty)
% Number of functors : 4 ( 4 usr; 2 con; 0-2 aty)
% Number of variables : 11 ( 1 sgn)
% SPC : CNF_UNS_RFO_NEQ_HRN
% Comments :
%--------------------------------------------------------------------------
cnf(condensed_detachment,axiom,
( ~ is_a_theorem(implies(X,Y))
| ~ is_a_theorem(X)
| is_a_theorem(Y) ) ).
cnf(mv_1,axiom,
is_a_theorem(implies(X,implies(Y,X))) ).
cnf(mv_2,axiom,
is_a_theorem(implies(implies(X,Y),implies(implies(Y,Z),implies(X,Z)))) ).
cnf(mv_3,axiom,
is_a_theorem(implies(implies(implies(X,Y),Y),implies(implies(Y,X),X))) ).
cnf(mv_5,axiom,
is_a_theorem(implies(implies(not(X),not(Y)),implies(Y,X))) ).
cnf(prove_mv_36,negated_conjecture,
~ is_a_theorem(implies(implies(a,b),implies(not(b),not(a)))) ).
%--------------------------------------------------------------------------