TPTP Problem File: LCL113-2.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : LCL113-2 : TPTP v9.0.0. Released v1.0.0.
% Domain : Logic Calculi (Many valued sentential)
% Problem : MV-33 depends on the Meredith system
% Version : [TPTP] axioms.
% Theorem formulation : Wajsberg algebra formulation
% English : An axiomatisation of the many valued sentential calculus
% is {MV-1,MV-2,MV-3,MV-5} by Meredith. Wajsberg presented
% an equality axiomatisation. Show that MV-33 depends on the
% Wajsberg axiomatisation.
% Refs : [FRT84] Font et al. (1984), Wajsberg Algebras
% : [MW92] McCune & Wos (1992), Experiments in Automated Deductio
% Source : [TPTP]
% Names :
% Status : Unsatisfiable
% Rating : 0.14 v8.2.0, 0.17 v8.1.0, 0.20 v7.5.0, 0.12 v7.4.0, 0.26 v7.3.0, 0.21 v7.1.0, 0.11 v6.4.0, 0.16 v6.3.0, 0.18 v6.2.0, 0.14 v6.1.0, 0.06 v6.0.0, 0.29 v5.5.0, 0.26 v5.4.0, 0.07 v5.3.0, 0.00 v5.2.0, 0.07 v5.0.0, 0.00 v2.2.1, 0.22 v2.2.0, 0.29 v2.1.0, 0.25 v2.0.0
% Syntax : Number of clauses : 5 ( 5 unt; 0 nHn; 1 RR)
% Number of literals : 5 ( 5 equ; 1 neg)
% Maximal clause size : 1 ( 1 avg)
% Maximal term depth : 4 ( 2 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 5 ( 5 usr; 3 con; 0-2 aty)
% Number of variables : 8 ( 0 sgn)
% SPC : CNF_UNS_RFO_PEQ_UEQ
% Comments :
%--------------------------------------------------------------------------
%----Include Wajsberg algebra axioms
include('Axioms/LCL001-0.ax').
%--------------------------------------------------------------------------
cnf(prove_mv_33,negated_conjecture,
implies(implies(not(x),y),implies(not(y),x)) != truth ).
%--------------------------------------------------------------------------