TPTP Problem File: LCL112-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : LCL112-1 : TPTP v9.0.0. Released v1.0.0.
% Domain : Logic Calculi (Many valued sentential)
% Problem : MV-29 depnds on the Merideth system
% Version : [McC92] axioms.
% English : An axiomatisation of the many valued sentential calculus
% is {MV-1,MV-2,MV-3,MV-5} by Meredith. Show that 29 depends
% on the Meredith system.
% Refs : [MW92] McCune & Wos (1992), Experiments in Automated Deductio
% : [McC92] McCune (1992), Email to G. Sutcliffe
% Source : [McC92]
% Names : MV-58 [MW92]
% : mv.in part 3 [OTTER]
% Status : Unsatisfiable
% Rating : 0.00 v5.4.0, 0.06 v5.3.0, 0.15 v5.2.0, 0.08 v5.1.0, 0.06 v5.0.0, 0.07 v4.0.1, 0.00 v2.6.0, 0.14 v2.5.0, 0.00 v2.4.0, 0.00 v2.3.0, 0.14 v2.2.1, 0.11 v2.1.0, 0.13 v2.0.0
% Syntax : Number of clauses : 6 ( 5 unt; 0 nHn; 2 RR)
% Number of literals : 8 ( 0 equ; 3 neg)
% Maximal clause size : 3 ( 1 avg)
% Maximal term depth : 4 ( 2 avg)
% Number of predicates : 1 ( 1 usr; 0 prp; 1-1 aty)
% Number of functors : 3 ( 3 usr; 1 con; 0-2 aty)
% Number of variables : 11 ( 1 sgn)
% SPC : CNF_UNS_RFO_NEQ_HRN
% Comments :
%--------------------------------------------------------------------------
cnf(condensed_detachment,axiom,
( ~ is_a_theorem(implies(X,Y))
| ~ is_a_theorem(X)
| is_a_theorem(Y) ) ).
cnf(mv_1,axiom,
is_a_theorem(implies(X,implies(Y,X))) ).
cnf(mv_2,axiom,
is_a_theorem(implies(implies(X,Y),implies(implies(Y,Z),implies(X,Z)))) ).
cnf(mv_3,axiom,
is_a_theorem(implies(implies(implies(X,Y),Y),implies(implies(Y,X),X))) ).
cnf(mv_5,axiom,
is_a_theorem(implies(implies(not(X),not(Y)),implies(Y,X))) ).
cnf(prove_mv_29,negated_conjecture,
~ is_a_theorem(implies(a,not(not(a)))) ).
%--------------------------------------------------------------------------