TPTP Problem File: LCL109-5.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : LCL109-5 : TPTP v9.0.0. Released v1.0.0.
% Domain : Logic Calculi (Wajsberg Algebra)
% Problem : A theorem in the lattice structure of Wajsberg algebras
% Version : [Bon91] (equality) axioms : Augmented.
% Theorem formulation : Wajsberg algebras lattice structure.
% English :
% Refs : [FRT84] Font et al. (1984), Wajsberg Algebras
% : [Bon91] Bonacina (1991), Problems in Lukasiewicz Logic
% Source : [Bon91]
% Names : Lattice structure theorem 8 [Bon91]
% Status : Unsatisfiable
% Rating : 0.00 v6.0.0, 0.11 v5.5.0, 0.19 v5.4.0, 0.20 v5.3.0, 0.25 v5.2.0, 0.12 v5.1.0, 0.14 v5.0.0, 0.29 v4.1.0, 0.11 v4.0.1, 0.17 v3.7.0, 0.00 v3.3.0, 0.14 v3.2.0, 0.00 v3.1.0, 0.11 v2.7.0, 0.00 v2.6.0, 0.29 v2.5.0, 0.00 v2.2.1, 0.33 v2.2.0, 0.43 v2.1.0, 0.60 v2.0.0
% Syntax : Number of clauses : 17 ( 11 unt; 0 nHn; 5 RR)
% Number of literals : 23 ( 13 equ; 7 neg)
% Maximal clause size : 2 ( 1 avg)
% Maximal term depth : 4 ( 2 avg)
% Number of predicates : 2 ( 1 usr; 0 prp; 2-2 aty)
% Number of functors : 7 ( 7 usr; 3 con; 0-2 aty)
% Number of variables : 38 ( 0 sgn)
% SPC : CNF_UNS_RFO_SEQ_HRN
% Comments :
%--------------------------------------------------------------------------
%----Include Wajsberg algebra axioms
include('Axioms/LCL001-0.ax').
%----Include Wajsberg algebra lattice structure axioms
include('Axioms/LCL001-1.ax').
%--------------------------------------------------------------------------
%----Lemmas in Wajsberg algebra lattice structures.
cnf(lemma_1,axiom,
( ~ ordered(X,Y)
| ordered(implies(X,Z),implies(Y,Z)) ) ).
cnf(lemma_2,axiom,
( ~ ordered(X,Y)
| ordered(implies(Z,X),implies(Z,Y)) ) ).
cnf(lemma_3_1,axiom,
( ~ ordered(X,implies(Y,Z))
| ordered(Y,implies(X,Z)) ) ).
cnf(lemma_3_2,axiom,
( ~ ordered(Y,implies(X,Z))
| ordered(X,implies(Y,Z)) ) ).
cnf(lemma_4,axiom,
not(big_V(X,Y)) = big_hat(not(X),not(Y)) ).
cnf(lemma_5,axiom,
not(big_hat(X,Y)) = big_V(not(X),not(Y)) ).
cnf(lemma_6,axiom,
implies(big_V(X,Y),Z) = big_hat(implies(X,Z),implies(Y,Z)) ).
cnf(lemma_7,axiom,
implies(X,big_hat(Y,Z)) = big_hat(implies(X,Y),implies(X,Z)) ).
cnf(prove_mv_4,negated_conjecture,
big_V(implies(x,y),implies(y,x)) != truth ).
%--------------------------------------------------------------------------