TPTP Problem File: LCL105-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : LCL105-1 : TPTP v9.0.0. Released v1.0.0.
% Domain : Logic Calculi (Left group)
% Problem : LG-2 depends on the 7th McCune system
% Version : [McC92b] axioms.
% English : Axiomatisations of the left group calculus are {LG-1,
% LG-2,LG-3,LG-4,LG-5} by Kalman, {LG-2,LG-3}, {LG-2,P-1},
% {LG-2,P-4}, {LG-2,Q-1,Q-2}, {P-1,Q-3}, {P-4,Q-3}, {Q-1,
% Q-2,Q-3}, {Q-1,Q-3,Q-4}, {LG-27-1690} all by McCune. Show
% that LG-2 depends on the seventh McCune system.
% Refs : [MW92] McCune & Wos (1992), Experiments in Automated Deductio
% : [McC92a] McCune (1992), Automated Discovery of New Axiomatisat
% : [McC92b] McCune (1992), Email to G. Sutcliffe
% Source : [McC92b]
% Names : LG-98 [MW92]
% Status : Unsatisfiable
% Rating : 0.67 v9.0.0, 0.36 v8.2.0, 0.29 v8.1.0, 0.25 v7.4.0, 0.33 v7.3.0, 0.25 v6.2.0, 0.50 v6.1.0, 0.79 v6.0.0, 0.56 v5.5.0, 0.81 v5.4.0, 0.89 v5.3.0, 0.90 v5.2.0, 0.85 v5.1.0, 0.81 v5.0.0, 0.73 v4.1.0, 0.80 v4.0.1, 0.57 v3.7.0, 0.71 v3.4.0, 0.80 v3.3.0, 0.33 v3.1.0, 0.67 v2.7.0, 0.75 v2.6.0, 0.71 v2.5.0, 0.57 v2.4.0, 0.71 v2.3.0, 0.57 v2.2.1, 0.89 v2.2.0, 1.00 v2.0.0
% Syntax : Number of clauses : 5 ( 4 unt; 0 nHn; 2 RR)
% Number of literals : 7 ( 0 equ; 3 neg)
% Maximal clause size : 3 ( 1 avg)
% Maximal term depth : 6 ( 2 avg)
% Number of predicates : 1 ( 1 usr; 0 prp; 1-1 aty)
% Number of functors : 5 ( 5 usr; 4 con; 0-2 aty)
% Number of variables : 11 ( 0 sgn)
% SPC : CNF_UNS_RFO_NEQ_HRN
% Comments :
%--------------------------------------------------------------------------
cnf(condensed_detachment,axiom,
( ~ is_a_theorem(equivalent(X,Y))
| ~ is_a_theorem(X)
| is_a_theorem(Y) ) ).
cnf(q_1,axiom,
is_a_theorem(equivalent(X,equivalent(equivalent(Y,Z),equivalent(equivalent(Z,Y),X)))) ).
cnf(q_2,axiom,
is_a_theorem(equivalent(equivalent(X,Y),equivalent(equivalent(Z,X),equivalent(Z,Y)))) ).
cnf(q_3,axiom,
is_a_theorem(equivalent(equivalent(equivalent(X,Y),equivalent(equivalent(Y,X),Z)),Z)) ).
cnf(prove_lg_2,negated_conjecture,
~ is_a_theorem(equivalent(equivalent(equivalent(equivalent(equivalent(a,b),equivalent(a,c)),equivalent(b,c)),e),e)) ).
%--------------------------------------------------------------------------