TPTP Problem File: LCL092-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : LCL092-1 : TPTP v9.0.0. Released v1.0.0.
% Domain : Logic Calculi (Implicational propositional)
% Problem : IC-3 depends on the 5th Lukasiewicz axiom
% Version : [TPTP] axioms.
% English : Axiomatisations of the Implicational propositional calculus
% are {IC-2,IC-3,IC-4} by Tarski-Bernays and single Lukasiewicz
% axioms.Show that IC-3 depends on the fifth Lukasiewicz axiom.
% Refs : [Luk48] Lukasiewicz (1948), The Shortest Axiom of the Implicat
% : [Pfe88] Pfenning (1988), Single Axioms in the Implicational Pr
% Source : [TPTP]
% Names :
% Status : Unsatisfiable
% Rating : 0.00 v8.1.0, 0.25 v7.4.0, 0.17 v7.3.0, 0.25 v6.2.0, 0.33 v6.1.0, 0.21 v6.0.0, 0.00 v5.5.0, 0.25 v5.4.0, 0.28 v5.3.0, 0.35 v5.2.0, 0.23 v5.1.0, 0.31 v5.0.0, 0.33 v4.1.0, 0.27 v4.0.1, 0.00 v3.1.0, 0.17 v2.7.0, 0.25 v2.6.0, 0.29 v2.5.0, 0.00 v2.4.0, 0.00 v2.3.0, 0.14 v2.2.1, 0.56 v2.1.0, 0.75 v2.0.0
% Syntax : Number of clauses : 3 ( 2 unt; 0 nHn; 2 RR)
% Number of literals : 5 ( 0 equ; 3 neg)
% Maximal clause size : 3 ( 1 avg)
% Maximal term depth : 5 ( 2 avg)
% Number of predicates : 1 ( 1 usr; 0 prp; 1-1 aty)
% Number of functors : 3 ( 3 usr; 2 con; 0-2 aty)
% Number of variables : 7 ( 2 sgn)
% SPC : CNF_UNS_RFO_NEQ_HRN
% Comments :
%--------------------------------------------------------------------------
cnf(condensed_detachment,axiom,
( ~ is_a_theorem(implies(X,Y))
| ~ is_a_theorem(X)
| is_a_theorem(Y) ) ).
cnf(ic_JLukasiewicz_5,axiom,
is_a_theorem(implies(implies(implies(P,Q),implies(R,S)),implies(implies(S,P),implies(T,implies(R,P))))) ).
cnf(prove_ic_3,negated_conjecture,
~ is_a_theorem(implies(implies(implies(a,b),a),a)) ).
%--------------------------------------------------------------------------