TPTP Problem File: LCL080-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : LCL080-1 : TPTP v9.0.0. Released v1.0.0.
% Domain : Logic Calculi (Implicational propositional)
% Problem : The 1st Lukasiewicz axiom depends on Tarski-Bernays system
% Version : [McC92] axioms.
% English : Axiomatisations of the Implicational propositional calculus
% are {IC-2,IC-3,IC-4} by Tarski-Bernays and single Lukasiewicz
% axioms.Show that the 1st Lukasiewicz axiom depends on the
% Tarski-Bernays system.
% Refs : [Luk48] Lukasiewicz (1948), The Shortest Axiom of the Implicat
% : [MW92] McCune & Wos (1992), Experiments in Automated Deductio
% : [McC92] McCune (1992), Email to G. Sutcliffe
% Source : [McC92]
% Names : IC-63 [MW92]
% Status : Unsatisfiable
% Rating : 0.07 v9.0.0, 0.00 v6.2.0, 0.17 v6.1.0, 0.21 v6.0.0, 0.22 v5.5.0, 0.19 v5.4.0, 0.22 v5.3.0, 0.30 v5.2.0, 0.23 v5.1.0, 0.19 v5.0.0, 0.20 v4.0.1, 0.00 v3.1.0, 0.17 v2.7.0, 0.38 v2.6.0, 0.14 v2.5.0, 0.00 v2.4.0, 0.00 v2.3.0, 0.14 v2.2.1, 0.44 v2.1.0, 0.50 v2.0.0
% Syntax : Number of clauses : 5 ( 4 unt; 0 nHn; 2 RR)
% Number of literals : 7 ( 0 equ; 3 neg)
% Maximal clause size : 3 ( 1 avg)
% Maximal term depth : 4 ( 2 avg)
% Number of predicates : 1 ( 1 usr; 0 prp; 1-1 aty)
% Number of functors : 5 ( 5 usr; 4 con; 0-2 aty)
% Number of variables : 9 ( 2 sgn)
% SPC : CNF_UNS_RFO_NEQ_HRN
% Comments :
%--------------------------------------------------------------------------
cnf(condensed_detachment,axiom,
( ~ is_a_theorem(implies(X,Y))
| ~ is_a_theorem(X)
| is_a_theorem(Y) ) ).
cnf(ic_2,axiom,
is_a_theorem(implies(X,implies(Y,X))) ).
cnf(ic_3,axiom,
is_a_theorem(implies(implies(implies(X,Y),X),X)) ).
cnf(ic_4,axiom,
is_a_theorem(implies(implies(X,Y),implies(implies(Y,Z),implies(X,Z)))) ).
cnf(prove_ic_JLukasiewicz,negated_conjecture,
~ is_a_theorem(implies(implies(implies(a,b),c),implies(implies(c,a),implies(e,a)))) ).
%--------------------------------------------------------------------------