TPTP Problem File: LCL079-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : LCL079-1 : TPTP v9.0.0. Released v1.0.0.
% Domain : Logic Calculi (Implication/Negation 2 valued sentential)
% Problem : Transitivity can be derived from Church's system
% Version : [ANL] axioms.
% English : An axiomatisation of the Implication/Negation 2 valued
% sentential calculus is {CN-18,CN-35,CN-49} by Church. Show
% that transitivity of implies can be derived from the Church
% system.
% Refs :
% Source : [ANL]
% Names : morgan.one.ver2.in [ANL]
% Status : Unsatisfiable
% Rating : 0.00 v5.4.0, 0.06 v5.3.0, 0.05 v5.2.0, 0.00 v2.1.0, 0.00 v2.0.0
% Syntax : Number of clauses : 7 ( 6 unt; 0 nHn; 4 RR)
% Number of literals : 9 ( 0 equ; 3 neg)
% Maximal clause size : 3 ( 1 avg)
% Maximal term depth : 4 ( 2 avg)
% Number of predicates : 1 ( 1 usr; 0 prp; 1-1 aty)
% Number of functors : 5 ( 5 usr; 3 con; 0-2 aty)
% Number of variables : 9 ( 1 sgn)
% SPC : CNF_UNS_RFO_NEQ_HRN
% Comments : Contributed to the ANL library by Charles Morgan.
%--------------------------------------------------------------------------
cnf(condensed_detachment,axiom,
( ~ is_a_theorem(implies(X,Y))
| ~ is_a_theorem(X)
| is_a_theorem(Y) ) ).
cnf(cn_18,axiom,
is_a_theorem(implies(X,implies(Y,X))) ).
cnf(cn_35,axiom,
is_a_theorem(implies(implies(X,implies(Y,Z)),implies(implies(X,Y),implies(X,Z)))) ).
cnf(cn_49_reversed,axiom,
is_a_theorem(implies(implies(Y,X),implies(not(X),not(Y)))) ).
cnf(a_implies_b,hypothesis,
is_a_theorem(implies(a,b)) ).
cnf(b_implies_c,hypothesis,
is_a_theorem(implies(b,c)) ).
cnf(prove_transitivity,negated_conjecture,
~ is_a_theorem(implies(a,c)) ).
%--------------------------------------------------------------------------