TPTP Problem File: LCL078-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : LCL078-1 : TPTP v9.0.0. Released v1.0.0.
% Domain : Logic Calculi (Implication/Negation 2 valued sentential)
% Problem : CN-40 depends on CN-18 CN-35 CN-46
% Version : [Pel86] axioms.
% English : Axiomatisations of the Implication/Negation 2 valued
% sentential calculus are {CN-1,CN-2,CN-3} by Lukasiewicz,
% {CN-18,CN-21,CN-35,CN-39,CN-39,CN-40,CN-46} by Frege,
% {CN-3,CN-18,CN-21,CN-22,CN-30,CN-54} by Hilbert, {CN-18,
% CN-35,CN-49} by Church, {CN-19,CN-37,CN-59} by Lukasiewicz,
% {CN-19,CN-37,CN-60} by Wos, and the single Meredith axiom.
% Show that CN-40 depends on the modified Church system
% {CN-18,CN-35,CN-46}.
% Refs : [Mor84] Morgan (1984), Logic Problems
% : [Pel86] Pelletier (1986), Seventy-five Problems for Testing Au
% Source : [Pel86]
% Names : Pelletier 68 [Pel86]
% : morgan.five.ver2.in [ANL]
% Status : Satisfiable
% Rating : 0.00 v8.1.0, 0.33 v7.5.0, 0.00 v6.2.0, 0.20 v6.1.0, 0.00 v5.5.0, 0.25 v5.4.0, 0.89 v5.3.0, 0.86 v5.0.0, 0.62 v4.1.0, 0.57 v4.0.0, 0.62 v3.5.0, 0.71 v3.4.0, 0.83 v3.2.0, 0.80 v3.1.0, 0.86 v2.7.0, 0.80 v2.6.0, 0.75 v2.5.0, 0.50 v2.4.0, 0.67 v2.2.1, 0.75 v2.2.0, 0.67 v2.1.0, 1.00 v2.0.0
% Syntax : Number of clauses : 5 ( 4 unt; 0 nHn; 2 RR)
% Number of literals : 7 ( 0 equ; 3 neg)
% Maximal clause size : 3 ( 1 avg)
% Maximal term depth : 4 ( 2 avg)
% Number of predicates : 1 ( 1 usr; 0 prp; 1-1 aty)
% Number of functors : 3 ( 3 usr; 1 con; 0-2 aty)
% Number of variables : 9 ( 1 sgn)
% SPC : CNF_SAT_RFO_NEQ
% Comments :
%--------------------------------------------------------------------------
cnf(condensed_detachment,axiom,
( ~ is_a_theorem(implies(X,Y))
| ~ is_a_theorem(X)
| is_a_theorem(Y) ) ).
cnf(cn_18,axiom,
is_a_theorem(implies(X,implies(Y,X))) ).
cnf(cn_35,axiom,
is_a_theorem(implies(implies(X,implies(Y,Z)),implies(implies(X,Y),implies(X,Z)))) ).
cnf(cn_46,axiom,
is_a_theorem(implies(implies(Y,X),implies(not(X),not(Y)))) ).
cnf(prove_cn_40,negated_conjecture,
~ is_a_theorem(implies(a,not(not(a)))) ).
%--------------------------------------------------------------------------