TPTP Problem File: LCL076-2.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : LCL076-2 : TPTP v9.0.0. Released v1.0.0.
% Domain : Logic Calculi (Implication/Negation 2 valued sentential)
% Problem : CN-40 depends on the Church system
% Version : [ANL] axioms : Augmented.
% English : Axiomatisations of the Implication/Negation 2 valued
% sentential calculus are {CN-1,CN-2,CN-3} by Lukasiewicz,
% {CN-18,CN-21,CN-35,CN-39,CN-39,CN-40,CN-46} by Frege,
% {CN-3,CN-18,CN-21,CN-22,CN-30,CN-54} by Hilbert, {CN-18,
% CN-35,CN-49} by Church, {CN-19,CN-37,CN-59} by Lukasiewicz,
% {CN-19,CN-37,CN-60} by Wos, and the single Meredith axiom.
% Show that CN-40 depends on the Church system.
% Refs :
% Source : [ANL]
% Names : morgan.three.ver1.in [ANL]
% : morgan.three.ver2.in [ANL]
% Status : Unsatisfiable
% Rating : 0.00 v5.4.0, 0.06 v5.3.0, 0.10 v5.2.0, 0.00 v2.0.0
% Syntax : Number of clauses : 6 ( 5 unt; 0 nHn; 2 RR)
% Number of literals : 8 ( 0 equ; 3 neg)
% Maximal clause size : 3 ( 1 avg)
% Maximal term depth : 4 ( 2 avg)
% Number of predicates : 1 ( 1 usr; 0 prp; 1-1 aty)
% Number of functors : 3 ( 3 usr; 1 con; 0-2 aty)
% Number of variables : 10 ( 1 sgn)
% SPC : CNF_UNS_RFO_NEQ_HRN
% Comments : Contributed to the ANL library by Charles Morgan.
%--------------------------------------------------------------------------
cnf(condensed_detachment,axiom,
( ~ is_a_theorem(implies(X,Y))
| ~ is_a_theorem(X)
| is_a_theorem(Y) ) ).
cnf(cn_18,axiom,
is_a_theorem(implies(X,implies(Y,X))) ).
cnf(cn_35,axiom,
is_a_theorem(implies(implies(X,implies(Y,Z)),implies(implies(X,Y),implies(X,Z)))) ).
cnf(cn_49,axiom,
is_a_theorem(implies(implies(not(X),not(Y)),implies(Y,X))) ).
cnf(extra_lemma,axiom,
is_a_theorem(implies(not(not(X1)),X1)) ).
cnf(prove_cn_40,negated_conjecture,
~ is_a_theorem(implies(a,not(not(a)))) ).
%--------------------------------------------------------------------------