TPTP Problem File: LCL073-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : LCL073-1 : TPTP v9.0.0. Released v1.0.0.
% Domain : Logic Calculi (Implication/Negation 2 valued sentential)
% Problem : CN-1 depends on the single Merideth axiom
% Version : [McC92] axioms.
% English : Axiomatisations of the Implication/Negation 2 valued
% sentential calculus are {CN-1,CN-2,CN-3} by Lukasiewicz,
% {CN-18,CN-21,CN-35,CN-39,CN-39,CN-40,CN-46} by Frege,
% {CN-3,CN-18,CN-21,CN-22,CN-30,CN-54} by Hilbert, {CN-18,
% CN-35,CN-49} by Church, {CN-19,CN-37,CN-59} by Lukasiewicz,
% {CN-19,CN-37,CN-60} by Wos, and the single Meredith axiom.
% Show that CN-1 depends on the single Meredith axiom.
% Refs : [MW92] McCune & Wos (1992), Experiments in Automated Deductio
% : [McC92] McCune (1992), Email to G. Sutcliffe
% Source : [McC92]
% Names : CN-34 [MW92]
% Status : Unknown
% Rating : 1.00 v2.0.0
% Syntax : Number of clauses : 3 ( 2 unt; 0 nHn; 2 RR)
% Number of literals : 5 ( 0 equ; 3 neg)
% Maximal clause size : 3 ( 1 avg)
% Maximal term depth : 7 ( 2 avg)
% Number of predicates : 1 ( 1 usr; 0 prp; 1-1 aty)
% Number of functors : 5 ( 5 usr; 3 con; 0-2 aty)
% Number of variables : 7 ( 1 sgn)
% SPC : CNF_UNK_RFO_NEQ_HRN
% Comments :
%--------------------------------------------------------------------------
cnf(condensed_detachment,axiom,
( ~ is_a_theorem(implies(X,Y))
| ~ is_a_theorem(X)
| is_a_theorem(Y) ) ).
cnf(cn_CAMerideth,axiom,
is_a_theorem(implies(implies(implies(implies(implies(X,Y),implies(not(Z),not(U))),Z),V),implies(implies(V,X),implies(U,X)))) ).
cnf(prove_cn_1,negated_conjecture,
~ is_a_theorem(implies(implies(a,b),implies(implies(b,c),implies(a,c)))) ).
%--------------------------------------------------------------------------