TPTP Problem File: LCL073+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : LCL073+1 : TPTP v9.1.0. Released v9.1.0.
% Domain : Logic Calculi (Implication/Negation 2 valued sentential)
% Problem : CN-1 depends on the single Meredith axiom
% Version : [McC92] axioms.
% English : Axiomatisations of the Implication/Negation 2 valued
% sentential calculus are {CN-1,CN-2,CN-3} by Lukasiewicz,
% {CN-18,CN-21,CN-35,CN-39,CN-39,CN-40,CN-46} by Frege,
% {CN-3,CN-18,CN-21,CN-22,CN-30,CN-54} by Hilbert, {CN-18,
% CN-35,CN-49} by Church, {CN-19,CN-37,CN-59} by Lukasiewicz,
% {CN-19,CN-37,CN-60} by Wos, and the single Meredith axiom.
% Show that CN-1 depends on the single Meredith axiom.
% Refs : [MW92] McCune & Wos (1992), Experiments in Automated Deductio
% : [McC92] McCune (1992), Email to G. Sutcliffe
% : [RW+23] Rawson et al. (2023), Lemmas: Generation, Selection,
% Source : [McC92]
% Names : CN-34 [MW92]
% Status : Theorem
% Rating : 1.00 v9.1.0
% Syntax : Number of formulae : 3 ( 2 unt; 0 def)
% Number of atoms : 5 ( 0 equ)
% Maximal formula atoms : 3 ( 1 avg)
% Number of connectives : 4 ( 2 ~; 2 |; 0 &)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 6 ( 5 avg)
% Maximal term depth : 7 ( 2 avg)
% Number of predicates : 1 ( 1 usr; 0 prp; 1-1 aty)
% Number of functors : 2 ( 2 usr; 0 con; 1-2 aty)
% Number of variables : 10 ( 10 !; 0 ?)
% SPC : FOF_THM_RFO_NEQ
% Comments :
%--------------------------------------------------------------------------
fof(condensed_detachment,axiom,
! [X,Y] :
( ~ is_a_theorem(implies(X,Y))
| ~ is_a_theorem(X)
| is_a_theorem(Y) ) ).
fof(cn_CAMeredith,axiom,
! [X,Y,Z,U,V] : is_a_theorem(implies(implies(implies(implies(implies(X,Y),implies(not(Z),not(U))),Z),V),implies(implies(V,X),implies(U,X)))) ).
fof(prove_cn_1,conjecture,
! [A,B,C] :
is_a_theorem(implies(implies(A,B),implies(implies(B,C),implies(A,C)))) ).
%--------------------------------------------------------------------------