TPTP Problem File: LCL063-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : LCL063-1 : TPTP v9.0.0. Released v1.0.0.
% Domain : Logic Calculi (Implication/Negation 2 valued sentential)
% Problem : CN-CAMerideth depends on the Lukasiewicz system
% Version : [McC92] axioms.
% English : Axiomatisations of the Implication/Negation 2 valued
% sentential calculus are {CN-1,CN-2,CN-3} by Lukasiewicz,
% {CN-18,CN-21,CN-35,CN-39,CN-39,CN-40,CN-46} by Frege,
% {CN-3,CN-18,CN-21,CN-22,CN-30,CN-54} by Hilbert, {CN-18,
% CN-35,CN-49} by Church, {CN-19,CN-37,CN-59} by Lukasiewicz,
% {CN-19,CN-37,CN-60} by Wos, and the single Meredith axiom.
% Show that the single Meredith axiom depends on the short
% Lukasiewicz system.
% Refs : [MW92] McCune & Wos (1992), Experiments in Automated Deductio
% : [McC92] McCune (1992), Email to G. Sutcliffe
% Source : [McC92]
% Names : CN-24 [MW92]
% Status : Unsatisfiable
% Rating : 0.93 v9.0.0, 1.00 v8.1.0, 0.75 v7.4.0, 0.67 v7.3.0, 0.75 v6.2.0, 0.83 v6.1.0, 0.93 v6.0.0, 0.89 v5.5.0, 0.94 v5.3.0, 0.95 v5.2.0, 1.00 v4.0.0, 0.86 v3.4.0, 0.80 v3.3.0, 0.33 v3.2.0, 0.67 v3.1.0, 0.83 v2.7.0, 1.00 v2.6.0, 0.86 v2.5.0, 1.00 v2.4.0, 1.00 v2.0.0
% Syntax : Number of clauses : 5 ( 4 unt; 0 nHn; 2 RR)
% Number of literals : 7 ( 0 equ; 3 neg)
% Maximal clause size : 3 ( 1 avg)
% Maximal term depth : 7 ( 2 avg)
% Number of predicates : 1 ( 1 usr; 0 prp; 1-1 aty)
% Number of functors : 7 ( 7 usr; 5 con; 0-2 aty)
% Number of variables : 8 ( 1 sgn)
% SPC : CNF_UNS_RFO_NEQ_HRN
% Comments :
%--------------------------------------------------------------------------
cnf(condensed_detachment,axiom,
( ~ is_a_theorem(implies(X,Y))
| ~ is_a_theorem(X)
| is_a_theorem(Y) ) ).
cnf(cn_1,axiom,
is_a_theorem(implies(implies(X,Y),implies(implies(Y,Z),implies(X,Z)))) ).
cnf(cn_2,axiom,
is_a_theorem(implies(implies(not(X),X),X)) ).
cnf(cn_3,axiom,
is_a_theorem(implies(X,implies(not(X),Y))) ).
cnf(prove_cn_CAMerideth,negated_conjecture,
~ is_a_theorem(implies(implies(implies(implies(implies(a,b),implies(not(c),not(e))),c),falsehood),implies(implies(falsehood,a),implies(e,a)))) ).
%--------------------------------------------------------------------------