TPTP Problem File: LCL061+2.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : LCL061+2 : TPTP v9.1.0. Released v9.1.0.
% Domain : Logic Calculi (Implication/Falsehood 2 valued sentential)
% Problem : C0-CAMeredith depends on the Church system, Tarski/Rezus
% Version : [RW+23] axioms
% English : Axiomatisations for the Implication/Falsehood 2 valued
% sentential calculus are {C0-1,C0-2,C0-3,C0-4}
% by Tarski-Bernays, {C0-2,C0-5,C0-6} by Church, and the single
% Meredith axioms. Show that the Meredith axiom can be derived
% from the Church system.
% Refs : [MW92] McCune & Wos (1992), Experiments in Automated Deductio
% : [McC92] McCune (1992), Email to Geoff Sutcliffe
% : [Rez20] Rezus (2020), Tarski's Claim Thirty Years Later (2010)
% : [RW+23] Rawson et al. (2023), Lemmas: Generation, Selection, A
% Source : [McC92]
% Names : LCL061-1_basis_to_theorem_std.p [RW+23]
% Status : Theorem
% Rating : 1.00 v9.1.0
% Syntax : Number of formulae : 3 ( 2 unt; 0 def)
% Number of atoms : 5 ( 0 equ)
% Maximal formula atoms : 3 ( 1 avg)
% Number of connectives : 2 ( 0 ~; 0 |; 1 &)
% ( 0 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 16 ( 7 avg)
% Maximal term depth : 12 ( 3 avg)
% Number of predicates : 1 ( 1 usr; 0 prp; 1-1 aty)
% Number of functors : 5 ( 5 usr; 3 con; 0-2 aty)
% Number of variables : 17 ( 17 !; 0 ?)
% SPC : FOF_THM_RFO_NEQ
% Comments :
%------------------------------------------------------------------------------
fof(condensed_detachment,axiom,
! [X,Y] :
( ( is_a_theorem(implies(X,Y))
& is_a_theorem(X) )
=> is_a_theorem(Y) ) ).
fof(f2,axiom,(
! [A,B,C,D,E,F,G,H,I,J,K,L,M,N,O] : is_a_theorem(implies(implies(implies(implies(implies(A,implies(B,A)),implies(implies(C,implies(D,implies(E,D))),F)),F),implies(implies(implies(implies(implies(implies(implies(G,H),implies(implies(H,I),implies(G,I))),implies(implies(implies(n(J),J),J),K)),K),implies(implies(L,implies(n(L),M)),N)),N),O)),O)) )).
fof(f3,conjecture,(
is_a_theorem(implies(implies(n(a),c),implies(implies(b,c),implies(implies(a,b),c)))) )).
%------------------------------------------------------------------------------