TPTP Problem File: LCL061+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : LCL061+1 : TPTP v9.1.0. Released v9.1.0.
% Domain : Logic Calculi (Implication/Negation 2 valued sentential)
% Problem : CN-59 depends on the Lukasiewicz system
% Version : [McC92] axioms.
% English : Axiomatisations of the Implication/Negation 2 valued
% sentential calculus are {CN-1,CN-2,CN-3} by Lukasiewicz,
% {CN-18,CN-21,CN-35,CN-39,CN-39,CN-40,CN-46} by Frege,
% {CN-3,CN-18,CN-21,CN-22,CN-30,CN-54} by Hilbert, {CN-18,
% CN-35,CN-49} by Church, {CN-19,CN-37,CN-59} by Lukasiewicz,
% {CN-19,CN-37,CN-60} by Wos, and the single Meredith axiom.
% Show that CN-59 depends on the short Lukasiewicz system.
% Refs : [MW92] McCune & Wos (1992), Experiments in Automated Deductio
% : [McC92] McCune (1992), Email to Geoff Sutcliffe
% : [Wos96] Wos (1996), The Power of Combining Resonance with Heat
% : [RW+23] Rawson et al. (2023), Lemmas: Generation, Selection, A
% Source : [McC92]
% Names : thesis_59 [Wos96]
% : CN-22 [MW92]
% Status : Theorem
% Rating : 0.80 v9.1.0
% Syntax : Number of formulae : 5 ( 4 unt; 0 def)
% Number of atoms : 7 ( 0 equ)
% Maximal formula atoms : 3 ( 1 avg)
% Number of connectives : 2 ( 0 ~; 0 |; 1 &)
% ( 0 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 5 ( 3 avg)
% Maximal term depth : 5 ( 2 avg)
% Number of predicates : 1 ( 1 usr; 0 prp; 1-1 aty)
% Number of functors : 5 ( 5 usr; 3 con; 0-2 aty)
% Number of variables : 8 ( 8 !; 0 ?)
% SPC : FOF_THM_RFO_NEQ
% Comments :
%--------------------------------------------------------------------------
fof(condensed_detachment,axiom,
! [X,Y] :
( ( is_a_theorem(implies(X,Y))
& is_a_theorem(X) )
=> is_a_theorem(Y) ) ).
fof(cn_1,axiom,
! [X,Y,Z] : is_a_theorem(implies(implies(X,Y),implies(implies(Y,Z),implies(X,Z)))) ).
fof(cn_2,axiom,
! [X] : is_a_theorem(implies(implies(not(X),X),X)) ).
fof(cn_3,axiom,
! [X,Y] : is_a_theorem(implies(X,implies(not(X),Y))) ).
fof(prove_cn_59,conjecture,
is_a_theorem(implies(implies(not(a),c),implies(implies(b,c),implies(implies(a,b),c)))) ).
%--------------------------------------------------------------------------