TPTP Problem File: LCL041-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : LCL041-1 : TPTP v9.0.0. Released v1.0.0.
% Domain : Logic Calculi (Implication/Negation 2 valued sentential)
% Problem : CN-30 depends on the rest of Hilbert's system
% Version : [McC92] axioms.
% English : An early axiomatisation of Implication/Negation 2 valued
% sentential calculus was {CN-3,CN-18,CN-21,CN-22,CN-30, CN-54}
% by Hilbert. Show, like Lukasiewicz did, that CN-30 depends
% on the rest of this axiomatisation.
% Refs : [MW92] McCune & Wos (1992), Experiments in Automated Deductio
% : [McC92] McCune (1992), Email to G. Sutcliffe
% Source : [McC92]
% Names : CN-2 [MW92]
% Status : Unsatisfiable
% Rating : 0.00 v5.4.0, 0.06 v5.3.0, 0.10 v5.2.0, 0.08 v5.1.0, 0.06 v5.0.0, 0.07 v4.0.1, 0.00 v2.1.0, 0.00 v2.0.0
% Syntax : Number of clauses : 7 ( 6 unt; 0 nHn; 2 RR)
% Number of literals : 9 ( 0 equ; 3 neg)
% Maximal clause size : 3 ( 1 avg)
% Maximal term depth : 5 ( 2 avg)
% Number of predicates : 1 ( 1 usr; 0 prp; 1-1 aty)
% Number of functors : 4 ( 4 usr; 2 con; 0-2 aty)
% Number of variables : 14 ( 2 sgn)
% SPC : CNF_UNS_RFO_NEQ_HRN
% Comments :
%--------------------------------------------------------------------------
cnf(condensed_detachment,axiom,
( ~ is_a_theorem(implies(X,Y))
| ~ is_a_theorem(X)
| is_a_theorem(Y) ) ).
cnf(cn_3,axiom,
is_a_theorem(implies(X,implies(not(X),Y))) ).
cnf(cn_18,axiom,
is_a_theorem(implies(X,implies(Y,X))) ).
cnf(cn_21,axiom,
is_a_theorem(implies(implies(X,implies(Y,Z)),implies(Y,implies(X,Z)))) ).
cnf(cn_22,axiom,
is_a_theorem(implies(implies(Y,Z),implies(implies(X,Y),implies(X,Z)))) ).
cnf(cn_54,axiom,
is_a_theorem(implies(implies(X,Y),implies(implies(not(X),Y),Y))) ).
cnf(prove_cn_30,negated_conjecture,
~ is_a_theorem(implies(implies(a,implies(a,b)),implies(a,b))) ).
%--------------------------------------------------------------------------