TPTP Problem File: LCL038-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : LCL038-1 : TPTP v9.0.0. Released v1.0.0.
% Domain : Logic Calculi (Implication/Falsehood 2 valued sentential)
% Problem : C0-1 depends on a single axiom
% Version : [McC92] axioms.
% English : An axiomatisation for the Implication/Falsehood 2 valued
% sentential calculus is {C0-1,C0-2,C0-3,C0-4}
% by Tarski-Bernays. Show that C0-1 can be derived from the first
% Lukasiewicz axiom.
% Refs : [Luk48] Lukasiewicz (1948), The Shortest Axiom of the Implicat
% : [Pfe88] Pfenning (1988), Single Axioms in the Implicational Pr
% : [Ove90] Overbeek (1990), ATP competition announced at CADE-10
% : [WW+90] Wos et al. (1990), Automated Reasoning Contributes to
% : [LM92] Lusk & McCune (1992), Experiments with ROO, a Parallel
% : [MW92] McCune & Wos (1992), Experiments in Automated Deductio
% : [McC92] McCune (1992), Email to G. Sutcliffe
% : [Ove93] Overbeek (1993), The CADE-11 Competitions: A Personal
% : [LM93] Lusk & McCune (1993), Uniform Strategies: The CADE-11
% Source : [Ove90]
% Names : CADE-11 Competition 5 [Ove90]
% : THEOREM 5 [LM93]
% : H1 [Pfe88]
% : IC-1.3 [WW+90]
% : IC-67 [MW92]
% : Imp-4 [LM92]
% : ls5 [SETHEO]
% Status : Unsatisfiable
% Rating : 0.60 v9.0.0, 0.45 v8.2.0, 0.00 v7.4.0, 0.33 v7.3.0, 0.00 v7.0.0, 0.25 v6.2.0, 0.33 v6.1.0, 0.79 v6.0.0, 0.67 v5.5.0, 0.81 v5.4.0, 0.78 v5.3.0, 0.80 v5.2.0, 0.69 v5.0.0, 0.67 v4.1.0, 0.60 v4.0.1, 0.43 v4.0.0, 0.29 v3.4.0, 0.00 v3.2.0, 0.33 v2.7.0, 0.62 v2.6.0, 0.71 v2.5.0, 0.86 v2.4.0, 1.00 v2.3.0, 0.71 v2.2.1, 0.89 v2.2.0, 1.00 v2.0.0
% Syntax : Number of clauses : 3 ( 2 unt; 0 nHn; 2 RR)
% Number of literals : 5 ( 0 equ; 3 neg)
% Maximal clause size : 3 ( 1 avg)
% Maximal term depth : 4 ( 2 avg)
% Number of predicates : 1 ( 1 usr; 0 prp; 1-1 aty)
% Number of functors : 4 ( 4 usr; 3 con; 0-2 aty)
% Number of variables : 6 ( 2 sgn)
% SPC : CNF_UNS_RFO_NEQ_HRN
% Comments :
%--------------------------------------------------------------------------
cnf(condensed_detachment,axiom,
( ~ is_a_theorem(implies(X,Y))
| ~ is_a_theorem(X)
| is_a_theorem(Y) ) ).
cnf(ic_JLukasiewicz,axiom,
is_a_theorem(implies(implies(implies(X,Y),Z),implies(implies(Z,X),implies(U,X)))) ).
cnf(prove_c0_1,negated_conjecture,
~ is_a_theorem(implies(implies(a,b),implies(implies(b,c),implies(a,c)))) ).
%--------------------------------------------------------------------------