TPTP Problem File: LCL031-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : LCL031-1 : TPTP v9.0.0. Released v1.0.0.
% Domain : Logic Calculi (Implication/Falsehood 2 valued sentential)
% Problem : C0-CAMerideth depends on the Tarski-Bernays system
% Version : [McC92] axioms.
% English : Axiomatisations for the Implication/Falsehood 2 valued
% sentential calculus are {C0-1,C0-2,C0-3,C0-4}
% by Tarski-Bernays, {C0-2,C0-5,C0-6} by Church, and the single
% Meredith axioms. Show that the single Meredith axiom can
% be derived from the Tarski-Bernays system.
% Refs : [MW92] McCune & Wos (1992), Experiments in Automated Deductio
% : [McC92] McCune (1992), Email to G. Sutcliffe
% Source : [McC92]
% Names : C0-43 [MW92]
% Status : Unsatisfiable
% Rating : 0.53 v9.0.0, 0.45 v8.2.0, 0.14 v8.1.0, 0.25 v7.4.0, 0.33 v7.3.0, 0.25 v6.2.0, 0.67 v6.1.0, 0.64 v6.0.0, 0.44 v5.5.0, 0.69 v5.4.0, 0.67 v5.3.0, 0.70 v5.2.0, 0.54 v5.1.0, 0.62 v5.0.0, 0.60 v4.0.1, 0.29 v4.0.0, 0.14 v3.7.0, 0.00 v3.3.0, 0.33 v3.2.0, 0.00 v3.1.0, 0.17 v2.7.0, 0.38 v2.6.0, 0.43 v2.5.0, 0.86 v2.4.0, 1.00 v2.3.0, 0.86 v2.2.1, 1.00 v2.0.0
% Syntax : Number of clauses : 6 ( 5 unt; 0 nHn; 2 RR)
% Number of literals : 8 ( 0 equ; 3 neg)
% Maximal clause size : 3 ( 1 avg)
% Maximal term depth : 6 ( 2 avg)
% Number of predicates : 1 ( 1 usr; 0 prp; 1-1 aty)
% Number of functors : 6 ( 6 usr; 5 con; 0-2 aty)
% Number of variables : 10 ( 3 sgn)
% SPC : CNF_UNS_RFO_NEQ_HRN
% Comments :
%--------------------------------------------------------------------------
cnf(condensed_detachment,axiom,
( ~ is_a_theorem(implies(X,Y))
| ~ is_a_theorem(X)
| is_a_theorem(Y) ) ).
cnf(c0_1,axiom,
is_a_theorem(implies(implies(X,Y),implies(implies(Y,Z),implies(X,Z)))) ).
cnf(c0_2,axiom,
is_a_theorem(implies(X,implies(Y,X))) ).
cnf(c0_3,axiom,
is_a_theorem(implies(implies(implies(X,Y),X),X)) ).
cnf(c0_4,axiom,
is_a_theorem(implies(falsehood,X)) ).
cnf(prove_c0_CAMerideth,negated_conjecture,
~ is_a_theorem(implies(implies(implies(implies(implies(a,b),implies(c,falsehood)),e),falsehood),implies(implies(falsehood,a),implies(c,a)))) ).
%--------------------------------------------------------------------------