TPTP Problem File: LCL028+1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : LCL028+1 : TPTP v9.1.0. Released v9.1.0.
% Domain : Logic Calculi (Implication/Falsehood 2 valued sentential)
% Problem : C0-CAMeredith depends on the Church system
% Version : [McC92] axioms.
% English : Axiomatisations for the Implication/Falsehood 2 valued
% sentential calculus are {C0-1,C0-2,C0-3,C0-4}
% by Tarski-Bernays, {C0-2,C0-5,C0-6} by Church, and the single
% Meredith axioms. Show that the Meredith axiom can be derived
% from the Church system.
% Refs : [MW92] McCune & Wos (1992), Experiments in Automated Deductio
% : [McC92] McCune (1992), Email to Geoff Sutcliffe
% : [RW+23] Rawson et al. (2023), Lemmas: Generation, Selection, A
% Source : [McC92]
% Names : C0-40 [MW92]
% Status : Theorem
% Rating : 0.90 v9.1.0
% Syntax : Number of formulae : 5 ( 4 unt; 0 def)
% Number of atoms : 7 ( 0 equ)
% Maximal formula atoms : 3 ( 1 avg)
% Number of connectives : 2 ( 0 ~; 0 |; 1 &)
% ( 0 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 5 ( 3 avg)
% Maximal term depth : 6 ( 2 avg)
% Number of predicates : 1 ( 1 usr; 0 prp; 1-1 aty)
% Number of functors : 6 ( 6 usr; 5 con; 0-2 aty)
% Number of variables : 8 ( 8 !; 0 ?)
% SPC : FOF_THM_RFO_NEQ
% Comments :
%--------------------------------------------------------------------------
fof(condensed_detachment,axiom,
! [X,Y] :
( ( is_a_theorem(implies(X,Y))
& is_a_theorem(X) )
=> is_a_theorem(Y) ) ).
fof(c0_2,axiom,
! [X,Y] : is_a_theorem(implies(X,implies(Y,X))) ).
fof(c0_5,axiom,
! [X] : is_a_theorem(implies(implies(implies(X,falsehood),falsehood),X)) ).
fof(c0_6,axiom,
! [X,Y,Z] : is_a_theorem(implies(implies(X,implies(Y,Z)),implies(implies(X,Y),implies(X,Z)))) ).
fof(prove_c0_CAMeredith,conjecture,
is_a_theorem(implies(implies(implies(implies(implies(a,b),implies(c,falsehood)),e),falsehood),implies(implies(falsehood,a),implies(c,a)))) ).
%--------------------------------------------------------------------------