TPTP Problem File: LCL027-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : LCL027-1 : TPTP v9.0.0. Released v1.0.0.
% Domain : Logic Calculi (Implication/Falsehood 2 valued sentential)
% Problem : C0-4 depends on the Church system
% Version : [McC92] axioms.
% English : Axiomatisations for the Implication/Falsehood 2 valued
% sentential calculus are {C0-1,C0-2,C0-3,C0-4}
% by Tarski-Bernays, {C0-2,C0-5,C0-6} by Church, and the single
% Meredith axioms. Show that C0-4 can be derived from the
% Church system.
% Refs : [MW92] McCune & Wos (1992), Experiments in Automated Deductio
% : [McC92] McCune (1992), Email to G. Sutcliffe
% Source : [McC92]
% Names : C0-39 [MW92]
% Status : Unsatisfiable
% Rating : 0.00 v5.4.0, 0.06 v5.3.0, 0.10 v5.2.0, 0.08 v5.1.0, 0.06 v5.0.0, 0.00 v2.1.0, 0.00 v2.0.0
% Syntax : Number of clauses : 5 ( 4 unt; 0 nHn; 2 RR)
% Number of literals : 7 ( 0 equ; 3 neg)
% Maximal clause size : 3 ( 1 avg)
% Maximal term depth : 4 ( 2 avg)
% Number of predicates : 1 ( 1 usr; 0 prp; 1-1 aty)
% Number of functors : 3 ( 3 usr; 2 con; 0-2 aty)
% Number of variables : 8 ( 1 sgn)
% SPC : CNF_UNS_RFO_NEQ_HRN
% Comments :
%--------------------------------------------------------------------------
cnf(condensed_detachment,axiom,
( ~ is_a_theorem(implies(X,Y))
| ~ is_a_theorem(X)
| is_a_theorem(Y) ) ).
cnf(c0_2,axiom,
is_a_theorem(implies(X,implies(Y,X))) ).
cnf(c0_5,axiom,
is_a_theorem(implies(implies(implies(X,falsehood),falsehood),X)) ).
cnf(c0_6,axiom,
is_a_theorem(implies(implies(X,implies(Y,Z)),implies(implies(X,Y),implies(X,Z)))) ).
cnf(prove_c0_4,negated_conjecture,
~ is_a_theorem(implies(falsehood,a)) ).
%--------------------------------------------------------------------------