TPTP Problem File: LCL011-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : LCL011-1 : TPTP v9.0.0. Released v1.0.0.
% Domain : Logic Calculi (Equivalential)
% Problem : YQF depends on YQJ
% Version : [McC92] axioms.
% English : Show that the single Lukasiewicz axiom YQF can be derived
% from the single Lukasiewicz axiom YQJ.
% Refs : [MW92] McCune & Wos (1992), Experiments in Automated Deductio
% : [McC92] McCune (1992), Email to G. Sutcliffe
% : [Wos95] Wos (1995), Searching for Circles of Pure Proofs
% Source : [McC92]
% Names : EC-74 [MW92]
% Status : Unsatisfiable
% Rating : 0.00 v6.1.0, 0.07 v6.0.0, 0.00 v5.4.0, 0.06 v5.3.0, 0.05 v5.2.0, 0.08 v5.1.0, 0.06 v5.0.0, 0.07 v4.0.1, 0.00 v2.2.1, 0.11 v2.1.0, 0.25 v2.0.0
% Syntax : Number of clauses : 3 ( 2 unt; 0 nHn; 2 RR)
% Number of literals : 5 ( 0 equ; 3 neg)
% Maximal clause size : 3 ( 1 avg)
% Maximal term depth : 4 ( 2 avg)
% Number of predicates : 1 ( 1 usr; 0 prp; 1-1 aty)
% Number of functors : 4 ( 4 usr; 3 con; 0-2 aty)
% Number of variables : 5 ( 0 sgn)
% SPC : CNF_UNS_RFO_NEQ_HRN
% Comments :
%--------------------------------------------------------------------------
cnf(condensed_detachment,axiom,
( ~ is_a_theorem(equivalent(X,Y))
| ~ is_a_theorem(X)
| is_a_theorem(Y) ) ).
%----Axiom by Lukasiewicz
cnf(yqj,axiom,
is_a_theorem(equivalent(equivalent(X,Y),equivalent(equivalent(Z,X),equivalent(Y,Z)))) ).
%----Axiom by Lukasiewicz
cnf(prove_yqf,negated_conjecture,
~ is_a_theorem(equivalent(equivalent(a,b),equivalent(equivalent(a,c),equivalent(c,b)))) ).
%--------------------------------------------------------------------------