TPTP Problem File: LCL007-1.p
View Solutions
- Solve Problem
%--------------------------------------------------------------------------
% File : LCL007-1 : TPTP v9.0.0. Released v1.0.0.
% Domain : Logic Calculi (Equivalential)
% Problem : EC-2 depends on the Wajsberg system
% Version : [McC92] axioms.
% English : Two axiomatisations of the equivalential calculus are
% {EC-1,EC-2} by Lesniewski, and {EC-4,EC-5} by Wajsburg. Show
% that EC-2 can be derived from the Wajsburg system.
% Refs : [MW92] McCune & Wos (1992), Experiments in Automated Deductio
% : [McC92] McCune (1992), Email to G. Sutcliffe
% Source : [McC92]
% Names : EC-70 [MW92]
% Status : Unsatisfiable
% Rating : 0.00 v5.4.0, 0.06 v5.3.0, 0.10 v5.2.0, 0.00 v2.0.0
% Syntax : Number of clauses : 4 ( 3 unt; 0 nHn; 2 RR)
% Number of literals : 6 ( 0 equ; 3 neg)
% Maximal clause size : 3 ( 1 avg)
% Maximal term depth : 4 ( 2 avg)
% Number of predicates : 1 ( 1 usr; 0 prp; 1-1 aty)
% Number of functors : 4 ( 4 usr; 3 con; 0-2 aty)
% Number of variables : 7 ( 0 sgn)
% SPC : CNF_UNS_RFO_NEQ_HRN
% Comments :
%--------------------------------------------------------------------------
cnf(condensed_detachment,axiom,
( ~ is_a_theorem(equivalent(X,Y))
| ~ is_a_theorem(X)
| is_a_theorem(Y) ) ).
%----Axiom of symmetry
cnf(ec_4,axiom,
is_a_theorem(equivalent(equivalent(X,Y),equivalent(Y,X))) ).
%----Axiom of associativity
cnf(ec_5,axiom,
is_a_theorem(equivalent(equivalent(equivalent(X,Y),Z),equivalent(X,equivalent(Y,Z)))) ).
cnf(prove_ec_2,negated_conjecture,
~ is_a_theorem(equivalent(equivalent(a,equivalent(b,c)),equivalent(equivalent(a,b),c))) ).
%--------------------------------------------------------------------------