TPTP Problem File: LAT397-2.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LAT397-2 : TPTP v9.0.0. Released v8.1.0.
% Domain : Lattice Theory (Relational lattices)
% Problem : Theorem 3.4, clause 6, proving RL1
% Version : [LMH16] axioms : Augmented.
% English :
% Refs : [LMH16] Litak et al. (2016), Relational Lattices: From Databas
% : [Sma21] Smallbone (2021), Email to Geoff Sutcliffe
% Source : [Sma21]
% Names : rellat_theorem34_6a_extradefs.p [Sma21]
% Status : Unsatisfiable
% Rating : 0.93 v8.2.0, 0.94 v8.1.0
% Syntax : Number of clauses : 13 ( 12 unt; 0 nHn; 2 RR)
% Number of literals : 14 ( 14 equ; 2 neg)
% Maximal clause size : 2 ( 1 avg)
% Maximal term depth : 5 ( 1 avg)
% Number of predicates : 1 ( 0 usr; 0 prp; 2-2 aty)
% Number of functors : 10 ( 10 usr; 4 con; 0-3 aty)
% Number of variables : 32 ( 2 sgn)
% SPC : CNF_UNS_RFO_PEQ_NUE
% Comments :
%------------------------------------------------------------------------------
cnf(commutativity,axiom,
meet(X,Y) = meet(Y,X) ).
cnf(associativity,axiom,
meet(X,meet(Y,Z)) = meet(meet(X,Y),Z) ).
cnf(commutativity_001,axiom,
join(X,Y) = join(Y,X) ).
cnf(associativity_002,axiom,
join(X,join(Y,Z)) = join(join(X,Y),Z) ).
cnf(absorption,axiom,
join(X,meet(X,Y)) = X ).
cnf(absorption_003,axiom,
meet(X,join(X,Y)) = X ).
cnf(definition_of_upme,axiom,
upme(X,Y,Z) = meet(X,join(Y,Z)) ).
cnf(definition_of_lome,axiom,
lome(X,Y,Z) = join(meet(X,Y),meet(X,Z)) ).
cnf(definition_of_upjo,axiom,
upjo(X,Y,Z) = meet(join(X,Y),join(X,Z)) ).
cnf(definition_of_lojo,axiom,
lojo(X,Y,Z) = join(X,meet(Y,Z)) ).
cnf(eq1,axiom,
upme(meet(a,Z1),Z2,Z3) = lome(meet(a,Z1),Z2,Z3) ).
cnf(qu2,axiom,
( upme(a,X2,Y2) != upme(a,X2,Z2)
| upme(X2,Y2,Z2) = lome(X2,Y2,Z2) ) ).
cnf(rl1,negated_conjecture,
lome(x,y,z) != meet(x,join(meet(y,join(x,z)),meet(z,join(x,y)))) ).
%------------------------------------------------------------------------------