TPTP Problem File: LAT381+3.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LAT381+3 : TPTP v9.0.0. Released v4.0.0.
% Domain : Lattice Theory
% Problem : Tarski-Knaster fixed point theorem 01, 02 expansion
% Version : Especial.
% English :
% Refs : [VLP07] Verchinine et al. (2007), System for Automated Deduction
% : [Pas08] Paskevich (2008), Email to G. Sutcliffe
% : [VL+08] Verchinine et al. (2008), On Correctness of Mathematic
% Source : [Pas08]
% Names : tarski_01.02 [Pas08]
% Status : Theorem
% Rating : 0.06 v8.2.0, 0.08 v8.1.0, 0.11 v7.5.0, 0.12 v7.4.0, 0.03 v7.1.0, 0.00 v6.2.0, 0.04 v6.1.0, 0.13 v6.0.0, 0.09 v5.5.0, 0.04 v5.4.0, 0.07 v5.3.0, 0.11 v5.2.0, 0.05 v5.1.0, 0.19 v5.0.0, 0.21 v4.1.0, 0.26 v4.0.1, 0.61 v4.0.0
% Syntax : Number of formulae : 17 ( 2 unt; 6 def)
% Number of atoms : 86 ( 2 equ)
% Maximal formula atoms : 22 ( 5 avg)
% Number of connectives : 70 ( 1 ~; 2 |; 28 &)
% ( 6 <=>; 33 =>; 0 <=; 0 <~>)
% Maximal formula depth : 18 ( 7 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 12 ( 10 usr; 1 prp; 0-3 aty)
% Number of functors : 4 ( 4 usr; 4 con; 0-0 aty)
% Number of variables : 40 ( 39 !; 1 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Problem generated by the SAD system [VLP07]
%------------------------------------------------------------------------------
fof(mSetSort,axiom,
! [W0] :
( aSet0(W0)
=> $true ) ).
fof(mElmSort,axiom,
! [W0] :
( aElement0(W0)
=> $true ) ).
fof(mEOfElem,axiom,
! [W0] :
( aSet0(W0)
=> ! [W1] :
( aElementOf0(W1,W0)
=> aElement0(W1) ) ) ).
fof(mDefEmpty,definition,
! [W0] :
( aSet0(W0)
=> ( isEmpty0(W0)
<=> ~ ? [W1] : aElementOf0(W1,W0) ) ) ).
fof(mDefSub,definition,
! [W0] :
( aSet0(W0)
=> ! [W1] :
( aSubsetOf0(W1,W0)
<=> ( aSet0(W1)
& ! [W2] :
( aElementOf0(W2,W1)
=> aElementOf0(W2,W0) ) ) ) ) ).
fof(mLessRel,axiom,
! [W0,W1] :
( ( aElement0(W0)
& aElement0(W1) )
=> ( sdtlseqdt0(W0,W1)
=> $true ) ) ).
fof(mARefl,axiom,
! [W0] :
( aElement0(W0)
=> sdtlseqdt0(W0,W0) ) ).
fof(mASymm,axiom,
! [W0,W1] :
( ( aElement0(W0)
& aElement0(W1) )
=> ( ( sdtlseqdt0(W0,W1)
& sdtlseqdt0(W1,W0) )
=> W0 = W1 ) ) ).
fof(mTrans,axiom,
! [W0,W1,W2] :
( ( aElement0(W0)
& aElement0(W1)
& aElement0(W2) )
=> ( ( sdtlseqdt0(W0,W1)
& sdtlseqdt0(W1,W2) )
=> sdtlseqdt0(W0,W2) ) ) ).
fof(mDefLB,definition,
! [W0] :
( aSet0(W0)
=> ! [W1] :
( aSubsetOf0(W1,W0)
=> ! [W2] :
( aLowerBoundOfIn0(W2,W1,W0)
<=> ( aElementOf0(W2,W0)
& ! [W3] :
( aElementOf0(W3,W1)
=> sdtlseqdt0(W2,W3) ) ) ) ) ) ).
fof(mDefUB,definition,
! [W0] :
( aSet0(W0)
=> ! [W1] :
( aSubsetOf0(W1,W0)
=> ! [W2] :
( aUpperBoundOfIn0(W2,W1,W0)
<=> ( aElementOf0(W2,W0)
& ! [W3] :
( aElementOf0(W3,W1)
=> sdtlseqdt0(W3,W2) ) ) ) ) ) ).
fof(mDefInf,definition,
! [W0] :
( aSet0(W0)
=> ! [W1] :
( aSubsetOf0(W1,W0)
=> ! [W2] :
( aInfimumOfIn0(W2,W1,W0)
<=> ( aElementOf0(W2,W0)
& aLowerBoundOfIn0(W2,W1,W0)
& ! [W3] :
( aLowerBoundOfIn0(W3,W1,W0)
=> sdtlseqdt0(W3,W2) ) ) ) ) ) ).
fof(mDefSup,definition,
! [W0] :
( aSet0(W0)
=> ! [W1] :
( aSubsetOf0(W1,W0)
=> ! [W2] :
( aSupremumOfIn0(W2,W1,W0)
<=> ( aElementOf0(W2,W0)
& aUpperBoundOfIn0(W2,W1,W0)
& ! [W3] :
( aUpperBoundOfIn0(W3,W1,W0)
=> sdtlseqdt0(W2,W3) ) ) ) ) ) ).
fof(m__725,hypothesis,
aSet0(xT) ).
fof(m__725_01,hypothesis,
( aSet0(xS)
& ! [W0] :
( aElementOf0(W0,xS)
=> aElementOf0(W0,xT) )
& aSubsetOf0(xS,xT) ) ).
fof(m__744,hypothesis,
( aElementOf0(xu,xT)
& aElementOf0(xu,xT)
& ! [W0] :
( aElementOf0(W0,xS)
=> sdtlseqdt0(W0,xu) )
& aUpperBoundOfIn0(xu,xS,xT)
& ! [W0] :
( ( ( aElementOf0(W0,xT)
& ! [W1] :
( aElementOf0(W1,xS)
=> sdtlseqdt0(W1,W0) ) )
| aUpperBoundOfIn0(W0,xS,xT) )
=> sdtlseqdt0(xu,W0) )
& aSupremumOfIn0(xu,xS,xT)
& aElementOf0(xv,xT)
& aElementOf0(xv,xT)
& ! [W0] :
( aElementOf0(W0,xS)
=> sdtlseqdt0(W0,xv) )
& aUpperBoundOfIn0(xv,xS,xT)
& ! [W0] :
( ( ( aElementOf0(W0,xT)
& ! [W1] :
( aElementOf0(W1,xS)
=> sdtlseqdt0(W1,W0) ) )
| aUpperBoundOfIn0(W0,xS,xT) )
=> sdtlseqdt0(xv,W0) )
& aSupremumOfIn0(xv,xS,xT) ) ).
fof(m__,conjecture,
xu = xv ).
%------------------------------------------------------------------------------