TPTP Problem File: LAT379+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : LAT379+1 : TPTP v9.0.0. Released v3.4.0.
% Domain : Lattice Theory
% Problem : Duality Based on Galois Connection - Part I T65
% Version : [Urb08] axioms : Especial.
% English :
% Refs : [Ban01] Bancerek (2001), Duality Based on the Galois Connectio
% : [Urb07] Urban (2007), MPTP 0.2: Design, Implementation, and In
% : [Urb08] Urban (2006), Email to G. Sutcliffe
% Source : [Urb08]
% Names : t65_waybel34 [Urb08]
% Status : Theorem
% Rating : 0.45 v9.0.0, 0.44 v8.2.0, 0.47 v8.1.0, 0.53 v7.4.0, 0.37 v7.3.0, 0.45 v7.2.0, 0.41 v7.1.0, 0.39 v7.0.0, 0.40 v6.4.0, 0.50 v6.3.0, 0.46 v6.2.0, 0.52 v6.1.0, 0.57 v6.0.0, 0.52 v5.5.0, 0.67 v5.4.0, 0.68 v5.3.0, 0.74 v5.2.0, 0.60 v5.1.0, 0.62 v4.1.0, 0.65 v4.0.0, 0.67 v3.7.0, 0.75 v3.5.0, 0.79 v3.4.0
% Syntax : Number of formulae : 83 ( 15 unt; 0 def)
% Number of atoms : 306 ( 6 equ)
% Maximal formula atoms : 13 ( 3 avg)
% Number of connectives : 259 ( 36 ~; 1 |; 139 &)
% ( 5 <=>; 78 =>; 0 <=; 0 <~>)
% Maximal formula depth : 14 ( 5 avg)
% Maximal term depth : 3 ( 1 avg)
% Number of predicates : 36 ( 34 usr; 1 prp; 0-4 aty)
% Number of functors : 7 ( 7 usr; 1 con; 0-3 aty)
% Number of variables : 140 ( 122 !; 18 ?)
% SPC : FOF_THM_RFO_SEQ
% Comments : Normal version: includes the axioms (which may be theorems from
% other articles) and background that are possibly necessary.
% : Translated by MPTP from the Mizar Mathematical Library 4.48.930.
% : The problem encoding is based on set theory.
%------------------------------------------------------------------------------
fof(t65_waybel34,conjecture,
! [A] :
( ( ~ v3_struct_0(A)
& l1_orders_2(A) )
=> ! [B] :
( ( ~ v3_struct_0(B)
& l1_orders_2(B) )
=> ! [C] :
( ( v1_funct_1(C)
& v1_funct_2(C,u1_struct_0(A),u1_struct_0(B))
& m2_relset_1(C,u1_struct_0(A),u1_struct_0(B)) )
=> ( v4_waybel34(C,A,B)
=> ( v20_waybel_0(C,A,B)
& v5_waybel34(C,A,B) ) ) ) ) ) ).
fof(antisymmetry_r2_hidden,axiom,
! [A,B] :
( r2_hidden(A,B)
=> ~ r2_hidden(B,A) ) ).
fof(cc10_membered,axiom,
! [A] :
( v1_membered(A)
=> ! [B] :
( m1_subset_1(B,A)
=> v1_xcmplx_0(B) ) ) ).
fof(cc11_membered,axiom,
! [A] :
( v2_membered(A)
=> ! [B] :
( m1_subset_1(B,A)
=> ( v1_xcmplx_0(B)
& v1_xreal_0(B) ) ) ) ).
fof(cc12_membered,axiom,
! [A] :
( v3_membered(A)
=> ! [B] :
( m1_subset_1(B,A)
=> ( v1_xcmplx_0(B)
& v1_xreal_0(B)
& v1_rat_1(B) ) ) ) ).
fof(cc13_membered,axiom,
! [A] :
( v4_membered(A)
=> ! [B] :
( m1_subset_1(B,A)
=> ( v1_xcmplx_0(B)
& v1_xreal_0(B)
& v1_int_1(B)
& v1_rat_1(B) ) ) ) ).
fof(cc14_membered,axiom,
! [A] :
( v5_membered(A)
=> ! [B] :
( m1_subset_1(B,A)
=> ( v1_xcmplx_0(B)
& v4_ordinal2(B)
& v1_xreal_0(B)
& v1_int_1(B)
& v1_rat_1(B) ) ) ) ).
fof(cc15_membered,axiom,
! [A] :
( v1_xboole_0(A)
=> ( v1_membered(A)
& v2_membered(A)
& v3_membered(A)
& v4_membered(A)
& v5_membered(A) ) ) ).
fof(cc16_membered,axiom,
! [A] :
( v1_membered(A)
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
=> v1_membered(B) ) ) ).
fof(cc17_membered,axiom,
! [A] :
( v2_membered(A)
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
=> ( v1_membered(B)
& v2_membered(B) ) ) ) ).
fof(cc18_membered,axiom,
! [A] :
( v3_membered(A)
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
=> ( v1_membered(B)
& v2_membered(B)
& v3_membered(B) ) ) ) ).
fof(cc19_membered,axiom,
! [A] :
( v4_membered(A)
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
=> ( v1_membered(B)
& v2_membered(B)
& v3_membered(B)
& v4_membered(B) ) ) ) ).
fof(cc1_finset_1,axiom,
! [A] :
( v1_xboole_0(A)
=> v1_finset_1(A) ) ).
fof(cc1_funct_1,axiom,
! [A] :
( v1_xboole_0(A)
=> v1_funct_1(A) ) ).
fof(cc1_membered,axiom,
! [A] :
( v5_membered(A)
=> v4_membered(A) ) ).
fof(cc1_relset_1,axiom,
! [A,B,C] :
( m1_subset_1(C,k1_zfmisc_1(k2_zfmisc_1(A,B)))
=> v1_relat_1(C) ) ).
fof(cc1_setfam_1,axiom,
! [A] :
( ( ~ v1_xboole_0(A)
& v1_setfam_1(A) )
=> ! [B] :
( m1_subset_1(B,A)
=> ~ v1_xboole_0(B) ) ) ).
fof(cc20_membered,axiom,
! [A] :
( v5_membered(A)
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
=> ( v1_membered(B)
& v2_membered(B)
& v3_membered(B)
& v4_membered(B)
& v5_membered(B) ) ) ) ).
fof(cc2_finset_1,axiom,
! [A] :
( v1_finset_1(A)
=> ! [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
=> v1_finset_1(B) ) ) ).
fof(cc2_funct_1,axiom,
! [A] :
( ( v1_relat_1(A)
& v1_xboole_0(A)
& v1_funct_1(A) )
=> ( v1_relat_1(A)
& v1_funct_1(A)
& v2_funct_1(A) ) ) ).
fof(cc2_membered,axiom,
! [A] :
( v4_membered(A)
=> v3_membered(A) ) ).
fof(cc3_membered,axiom,
! [A] :
( v3_membered(A)
=> v2_membered(A) ) ).
fof(cc4_membered,axiom,
! [A] :
( v2_membered(A)
=> v1_membered(A) ) ).
fof(commutativity_k2_struct_0,axiom,
! [A,B,C] :
( ( ~ v3_struct_0(A)
& l1_struct_0(A)
& m1_subset_1(B,u1_struct_0(A))
& m1_subset_1(C,u1_struct_0(A)) )
=> k2_struct_0(A,B,C) = k2_struct_0(A,C,B) ) ).
fof(commutativity_k2_tarski,axiom,
! [A,B] : k2_tarski(A,B) = k2_tarski(B,A) ).
fof(d15_waybel34,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l1_orders_2(A) )
=> ! [B] :
( ( ~ v3_struct_0(B)
& l1_orders_2(B) )
=> ! [C] :
( ( v1_funct_1(C)
& v1_funct_2(C,u1_struct_0(A),u1_struct_0(B))
& m2_relset_1(C,u1_struct_0(A),u1_struct_0(B)) )
=> ( v4_waybel34(C,A,B)
<=> ! [D] :
( ( v1_finset_1(D)
& m1_subset_1(D,k1_zfmisc_1(u1_struct_0(A))) )
=> r4_waybel_0(A,B,C,D) ) ) ) ) ) ).
fof(d16_waybel34,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l1_orders_2(A) )
=> ! [B] :
( ( ~ v3_struct_0(B)
& l1_orders_2(B) )
=> ! [C] :
( ( v1_funct_1(C)
& v1_funct_2(C,u1_struct_0(A),u1_struct_0(B))
& m2_relset_1(C,u1_struct_0(A),u1_struct_0(B)) )
=> ( v5_waybel34(C,A,B)
<=> r4_waybel_0(A,B,C,k1_pre_topc(A)) ) ) ) ) ).
fof(d2_pre_topc,axiom,
! [A] :
( l1_struct_0(A)
=> k1_pre_topc(A) = k1_xboole_0 ) ).
fof(d35_waybel_0,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l1_orders_2(A) )
=> ! [B] :
( ( ~ v3_struct_0(B)
& l1_orders_2(B) )
=> ! [C] :
( ( v1_funct_1(C)
& v1_funct_2(C,u1_struct_0(A),u1_struct_0(B))
& m2_relset_1(C,u1_struct_0(A),u1_struct_0(B)) )
=> ( v20_waybel_0(C,A,B)
<=> ! [D] :
( m1_subset_1(D,u1_struct_0(A))
=> ! [E] :
( m1_subset_1(E,u1_struct_0(A))
=> r4_waybel_0(A,B,C,k2_struct_0(A,D,E)) ) ) ) ) ) ) ).
fof(dt_k1_pre_topc,axiom,
! [A] :
( l1_struct_0(A)
=> m1_subset_1(k1_pre_topc(A),k1_zfmisc_1(u1_struct_0(A))) ) ).
fof(dt_k1_xboole_0,axiom,
$true ).
fof(dt_k1_zfmisc_1,axiom,
$true ).
fof(dt_k2_struct_0,axiom,
! [A,B,C] :
( ( ~ v3_struct_0(A)
& l1_struct_0(A)
& m1_subset_1(B,u1_struct_0(A))
& m1_subset_1(C,u1_struct_0(A)) )
=> m1_subset_1(k2_struct_0(A,B,C),k1_zfmisc_1(u1_struct_0(A))) ) ).
fof(dt_k2_tarski,axiom,
$true ).
fof(dt_k2_zfmisc_1,axiom,
$true ).
fof(dt_l1_orders_2,axiom,
! [A] :
( l1_orders_2(A)
=> l1_struct_0(A) ) ).
fof(dt_l1_struct_0,axiom,
$true ).
fof(dt_m1_relset_1,axiom,
$true ).
fof(dt_m1_subset_1,axiom,
$true ).
fof(dt_m2_relset_1,axiom,
! [A,B,C] :
( m2_relset_1(C,A,B)
=> m1_subset_1(C,k1_zfmisc_1(k2_zfmisc_1(A,B))) ) ).
fof(dt_u1_struct_0,axiom,
$true ).
fof(existence_l1_orders_2,axiom,
? [A] : l1_orders_2(A) ).
fof(existence_l1_struct_0,axiom,
? [A] : l1_struct_0(A) ).
fof(existence_m1_relset_1,axiom,
! [A,B] :
? [C] : m1_relset_1(C,A,B) ).
fof(existence_m1_subset_1,axiom,
! [A] :
? [B] : m1_subset_1(B,A) ).
fof(existence_m2_relset_1,axiom,
! [A,B] :
? [C] : m2_relset_1(C,A,B) ).
fof(fc12_membered,axiom,
! [A,B] :
( ( v1_xcmplx_0(A)
& v1_xcmplx_0(B) )
=> v1_membered(k2_tarski(A,B)) ) ).
fof(fc13_membered,axiom,
! [A,B] :
( ( v1_xreal_0(A)
& v1_xreal_0(B) )
=> ( v1_membered(k2_tarski(A,B))
& v2_membered(k2_tarski(A,B)) ) ) ).
fof(fc14_finset_1,axiom,
! [A,B] :
( ( v1_finset_1(A)
& v1_finset_1(B) )
=> v1_finset_1(k2_zfmisc_1(A,B)) ) ).
fof(fc14_membered,axiom,
! [A,B] :
( ( v1_rat_1(A)
& v1_rat_1(B) )
=> ( v1_membered(k2_tarski(A,B))
& v2_membered(k2_tarski(A,B))
& v3_membered(k2_tarski(A,B)) ) ) ).
fof(fc15_membered,axiom,
! [A,B] :
( ( v1_int_1(A)
& v1_int_1(B) )
=> ( v1_membered(k2_tarski(A,B))
& v2_membered(k2_tarski(A,B))
& v3_membered(k2_tarski(A,B))
& v4_membered(k2_tarski(A,B)) ) ) ).
fof(fc16_membered,axiom,
! [A,B] :
( ( v4_ordinal2(A)
& v4_ordinal2(B) )
=> ( v1_membered(k2_tarski(A,B))
& v2_membered(k2_tarski(A,B))
& v3_membered(k2_tarski(A,B))
& v4_membered(k2_tarski(A,B))
& v5_membered(k2_tarski(A,B)) ) ) ).
fof(fc1_pre_topc,axiom,
! [A] :
( l1_struct_0(A)
=> ( v1_xboole_0(k1_pre_topc(A))
& v1_membered(k1_pre_topc(A))
& v2_membered(k1_pre_topc(A))
& v3_membered(k1_pre_topc(A))
& v4_membered(k1_pre_topc(A))
& v5_membered(k1_pre_topc(A)) ) ) ).
fof(fc1_struct_0,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l1_struct_0(A) )
=> ~ v1_xboole_0(u1_struct_0(A)) ) ).
fof(fc1_waybel11,axiom,
! [A] :
( l1_orders_2(A)
=> ( v1_xboole_0(k1_pre_topc(A))
& v1_finset_1(k1_pre_topc(A))
& v5_orders_2(k1_pre_topc(A),A)
& v1_membered(k1_pre_topc(A))
& v2_membered(k1_pre_topc(A))
& v3_membered(k1_pre_topc(A))
& v4_membered(k1_pre_topc(A))
& v5_membered(k1_pre_topc(A))
& v1_waybel_0(k1_pre_topc(A),A)
& v2_waybel_0(k1_pre_topc(A),A)
& v12_waybel_0(k1_pre_topc(A),A)
& v13_waybel_0(k1_pre_topc(A),A) ) ) ).
fof(fc1_waybel_0,axiom,
! [A] :
( l1_orders_2(A)
=> ( v1_xboole_0(k1_pre_topc(A))
& v5_orders_2(k1_pre_topc(A),A)
& v1_finset_1(k1_pre_topc(A))
& v1_membered(k1_pre_topc(A))
& v2_membered(k1_pre_topc(A))
& v3_membered(k1_pre_topc(A))
& v4_membered(k1_pre_topc(A))
& v5_membered(k1_pre_topc(A))
& v1_waybel_0(k1_pre_topc(A),A)
& v2_waybel_0(k1_pre_topc(A),A) ) ) ).
fof(fc2_finset_1,axiom,
! [A,B] :
( ~ v1_xboole_0(k2_tarski(A,B))
& v1_finset_1(k2_tarski(A,B)) ) ).
fof(fc3_setfam_1,axiom,
! [A,B] :
( ( ~ v1_xboole_0(A)
& ~ v1_xboole_0(B) )
=> ( ~ v1_xboole_0(k2_tarski(A,B))
& v1_setfam_1(k2_tarski(A,B)) ) ) ).
fof(fc6_membered,axiom,
( v1_xboole_0(k1_xboole_0)
& v1_membered(k1_xboole_0)
& v2_membered(k1_xboole_0)
& v3_membered(k1_xboole_0)
& v4_membered(k1_xboole_0)
& v5_membered(k1_xboole_0) ) ).
fof(rc1_finset_1,axiom,
? [A] :
( ~ v1_xboole_0(A)
& v1_finset_1(A) ) ).
fof(rc1_funct_1,axiom,
? [A] :
( v1_relat_1(A)
& v1_funct_1(A) ) ).
fof(rc1_membered,axiom,
? [A] :
( ~ v1_xboole_0(A)
& v1_membered(A)
& v2_membered(A)
& v3_membered(A)
& v4_membered(A)
& v5_membered(A) ) ).
fof(rc1_setfam_1,axiom,
? [A] :
( ~ v1_xboole_0(A)
& v1_setfam_1(A) ) ).
fof(rc1_waybel_0,axiom,
! [A] :
( l1_orders_2(A)
=> ? [B] :
( m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A)))
& v1_waybel_0(B,A)
& v2_waybel_0(B,A) ) ) ).
fof(rc2_funct_1,axiom,
? [A] :
( v1_relat_1(A)
& v1_xboole_0(A)
& v1_funct_1(A) ) ).
fof(rc3_finset_1,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ? [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
& ~ v1_xboole_0(B)
& v1_finset_1(B) ) ) ).
fof(rc3_funct_1,axiom,
? [A] :
( v1_relat_1(A)
& v1_funct_1(A)
& v2_funct_1(A) ) ).
fof(rc3_struct_0,axiom,
? [A] :
( l1_struct_0(A)
& ~ v3_struct_0(A) ) ).
fof(rc4_finset_1,axiom,
! [A] :
( ~ v1_xboole_0(A)
=> ? [B] :
( m1_subset_1(B,k1_zfmisc_1(A))
& ~ v1_xboole_0(B)
& v1_finset_1(B) ) ) ).
fof(rc5_struct_0,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l1_struct_0(A) )
=> ? [B] :
( m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A)))
& ~ v1_xboole_0(B) ) ) ).
fof(rc7_waybel_0,axiom,
! [A] :
( l1_orders_2(A)
=> ? [B] :
( m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A)))
& v12_waybel_0(B,A)
& v13_waybel_0(B,A) ) ) ).
fof(rc8_waybel_0,axiom,
! [A] :
( ( ~ v3_struct_0(A)
& l1_orders_2(A) )
=> ? [B] :
( m1_subset_1(B,k1_zfmisc_1(u1_struct_0(A)))
& ~ v1_xboole_0(B)
& v12_waybel_0(B,A)
& v13_waybel_0(B,A) ) ) ).
fof(redefinition_k2_struct_0,axiom,
! [A,B,C] :
( ( ~ v3_struct_0(A)
& l1_struct_0(A)
& m1_subset_1(B,u1_struct_0(A))
& m1_subset_1(C,u1_struct_0(A)) )
=> k2_struct_0(A,B,C) = k2_tarski(B,C) ) ).
fof(redefinition_m2_relset_1,axiom,
! [A,B,C] :
( m2_relset_1(C,A,B)
<=> m1_relset_1(C,A,B) ) ).
fof(reflexivity_r1_tarski,axiom,
! [A,B] : r1_tarski(A,A) ).
fof(t1_subset,axiom,
! [A,B] :
( r2_hidden(A,B)
=> m1_subset_1(A,B) ) ).
fof(t2_subset,axiom,
! [A,B] :
( m1_subset_1(A,B)
=> ( v1_xboole_0(B)
| r2_hidden(A,B) ) ) ).
fof(t3_subset,axiom,
! [A,B] :
( m1_subset_1(A,k1_zfmisc_1(B))
<=> r1_tarski(A,B) ) ).
fof(t4_subset,axiom,
! [A,B,C] :
( ( r2_hidden(A,B)
& m1_subset_1(B,k1_zfmisc_1(C)) )
=> m1_subset_1(A,C) ) ).
fof(t5_subset,axiom,
! [A,B,C] :
~ ( r2_hidden(A,B)
& m1_subset_1(B,k1_zfmisc_1(C))
& v1_xboole_0(C) ) ).
fof(t6_boole,axiom,
! [A] :
( v1_xboole_0(A)
=> A = k1_xboole_0 ) ).
fof(t7_boole,axiom,
! [A,B] :
~ ( r2_hidden(A,B)
& v1_xboole_0(B) ) ).
fof(t8_boole,axiom,
! [A,B] :
~ ( v1_xboole_0(A)
& A != B
& v1_xboole_0(B) ) ).
%------------------------------------------------------------------------------